Within the framework of the Zer0-M project (financed by the Euro-Mediterranean Regional Programme for Local Water Management (Contract No. 2001 0515 59768)) the following laws, guidelines and regulations have been identified to handle wastewater, untreated, treated, or segregated. The different existing legislations can be divided according to figure 1.



| Fig   | 1. | overview   | of inv | vestigate | d legis | slations |
|-------|----|------------|--------|-----------|---------|----------|
| 1 15. | 1. | 0,01,10,00 | or m   | obligate  | a 1051  | Jucions  |

|                   | WHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Official name     | Guidelines for the safe use of wastewater, excreta and greywater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| In force since    | 2006, 3 <sup>rd</sup> edition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Area of reference | ISBN: 92 4 154686 7 (set)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Scope             | The WHO Guidelines are an integrated preventive management<br>framework for maximizing the public health benefits of wastewater,<br>excreta and greywater use in agriculture and aquaculture. The Guidelines<br>are built around a health component and an implementation component.<br>Health protection is dependent on both elements.<br><b>Health component:</b><br>• establishes a risk level associated with each identified health hazard;<br>• defines a level of health protection that is expressed as a health-based<br>target for each risk;<br>• identifies health protection measures that, used collectively, can<br>achieve the specified health-based target.<br><b>Implementation component:</b><br>• establishes monitoring and system assessment procedures;<br>• defines institutional and oversight responsibilities;<br>• requires system documentation;<br>• requires confirmation by independent surveillance. |
| Monitoring scope  | The act of conducting a planned sequence of observations or<br>measurements of control parameters to assess whether a health protection<br>measure is operating within design specifications (e.g. for wastewater<br>treatment turbidity). Emphasis is given to monitoring parameters that can<br>be measured quickly and easily and that can indicate if a process is<br>functioning properly. Operational monitoring data should help managers<br>to make corrections that can prevent hazard break-through.                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Volume 1: Policy a | and regulatory aspects                                                      |
|--------------------|-----------------------------------------------------------------------------|
| Scope              | The information in this volume is meant to give policy-makers and           |
| -                  | regulators an overview of the risks and benefits associated with the use    |
|                    | of wastewater, excreta and greywater in agriculture and aquaculture         |
|                    | without going into technical detail. It also presents an overview of the    |
|                    | nature and scope of options for protecting public health. This information  |
|                    | should be useful in the development of national policies for the safe use   |
|                    | of wastewater, excreta and grevwater. Detailed technical information on     |
|                    | health risk assessment, health protection measures and monitoring and       |
|                    | evaluation is presented in Volumes 2–3 and 4                                |
| Main Policy        | • Public health                                                             |
| Issues             | To what extent is waste management addressed in national public health      |
| 155005             | nolicies? What are the specific health hazards and risks associated with    |
|                    | the use of wastewater, excrete and/or greywater in agriculture and          |
|                    | aquaculture? Is there a national health impact assessment policy? Is there  |
|                    | a policy basis for pontrestment interventions in line with the concents     |
|                    | and proceedures contained in the Steekholm Framework?                       |
|                    | • Empirormental protection:                                                 |
|                    | • Environmental protection.                                                 |
|                    | To what extent and now is the management of wastewater, excrete and         |
|                    | greywater addressed in the existing environmental protection policy         |
|                    | framework? what are the current status, trends and expected outlook         |
|                    | What is the source its to use a source to source to source and greywater?   |
|                    | What is the capacity to management wastewater, excrete and greywater?       |
|                    | what are the current and potential environmental impacts? what are the      |
|                    | options for reuse in agriculture or aquaculture?                            |
|                    | • Food security:                                                            |
|                    | what are the objectives and criteria laid down in the national policies for |
|                    | food security? Is water a limiting factor in ensuring national food         |
|                    | security in the short/medium/long term? Are there real opportunities for    |
|                    | the use of wastewater, excreta and greywater in agriculture and             |
|                    | aquaculture to (partially) address this problem? Is reuse currently         |
|                    | practiced in the agricultural production system? Has an analysis of the     |
|                    | benefits and risks of such waste use been carried out?                      |
| Volume 2: Wastew   | vater use in agriculture                                                    |
| Scope              | The primary aim of the Guidelines is to maximize public health              |
|                    | protection and the beneficial use of important resources. The purpose of    |
|                    | this volume of the Guidelines is to ensure that the use of wastewater in    |
|                    | agriculture is made as safe as possible, so that the nutritional and        |
|                    | household food security benefits can be shared widely within                |
|                    | communities whose livelihood depends on wastewater-irrigated                |
|                    | agriculture. Thus, the adverse health impacts of wastewater use in          |
|                    | agriculture should be carefully weighed against the benefits to health and  |
|                    | the environment associated with these practices. Yet this is not a matter   |
|                    | of simple trade-offs. Wherever wastewater use in agriculture contributes    |
|                    | significantly to food security and nutritional status, the point is to      |
|                    | identify associated hazards, define the risks they represent to vulnerable  |
|                    | groups and design measures aimed at reducing these risks.                   |
|                    | Volume 2 of the Guidelines is intended to be used as the basis for the      |
|                    | development of international and national approaches (including             |
|                    | standards and regulations) to managing the health risks from hazards        |
|                    | associated with wastewater use in agriculture, as well as providing a       |

|                                                                                             | framework for national and local decision-making. The information<br>provided is applicable to the intentional use of wastewater in agriculture<br>and is also relevant where faecally contaminated water is used for<br>irrigation unintentionally.<br>The Guidelines provide an integrated preventive management framework<br>for safety applied from the point of wastewater generation to the<br>consumption of products grown with the wastewater and excreta. They<br>describe reasonable minimum requirements of good practice to protect<br>the health of the people using wastewater or excreta or consuming<br>products grown with wastewater or excreta and provide information that<br>is then used to derive health-based targets. Neither the minimum good<br>practices nor the health-based targets are mandatory limits. The preferred<br>approaches adopted by national or local<br>authorities towards implementation of the Guidelines, including health-<br>based targets, may vary depending on local social, cultural,<br>environmental and economic conditions, as well as knowledge of revites |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                        |  |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                             | of exposure, the name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ature and severity neasures available                                                                                                                                                                                                                                                         | of hazards and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e effectiveness of                                                                                                                                                                                                                     |  |  |
| Summary of<br>health risks<br>associated with<br>the use of<br>wastewater for<br>irrigation | exposed group<br>Consumers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nematode infection<br>Significant risk of<br>Ascaris infection for<br>both adults and<br>children with untreated<br>wastewater                                                                                                                                                                | <b>Bacteria/viruses</b><br>Cholera, typhoid and<br>shigellosis outbreaks<br>reported from use of<br>untreated wastewater;<br>seropositive responses<br>for <i>Helicobacter</i><br><i>pylori</i> (untreated);<br>increase in non-specific<br>diarrhoea when water<br>quality exceeds 10 <sup>4</sup><br>thermotolerant<br>coliforms/100 ml<br>Evidence of parasitic<br>protozoa found on<br>wastewater-irrigated<br>vegetable surfaces, but<br>no direct evidence of<br>disease transmission | <b>Protozoa</b><br>Evidence of parasitic<br>protozoa found on<br>wastewater-irrigated<br>vegetable surfaces, but<br>no direct evidence of<br>disease transmission                                                                      |  |  |
|                                                                                             | Farm workers and<br>their families                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Significant risk of<br><i>Ascaris</i> infection for<br>both adults and<br>children in contact with<br>untreated wastewater;<br>risk remains, especially<br>for children, when<br>wastewater treated to<br><1 nematode egg per<br>litre; increased risk of<br>hookworm infection in<br>workers | Increased risk of<br>diarrhoeal disease in<br>young children with<br>wastewater contact if<br>water quality exceeds<br>10 <sup>4</sup> thermotolerant<br>coliforms/100 ml;<br>elevated risk of<br><i>Salmonella</i> infection<br>in children exposed to<br>untreated wastewater;<br>elevated seroresponse<br>to norovirus in adults<br>exposed to partially<br>treated wastewater                                                                                                           | Risk of <i>Giardia</i><br><i>intestinalis</i> infection<br>was insignificant for<br>contact with both<br>untreated and treated<br>wastewater; increased<br>risk of amoebiasis<br>observed with contact<br>with untreated<br>wastewater |  |  |
|                                                                                             | Nearby<br>communities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ascaris transmission<br>not studied for<br>sprinkler irrigation, but<br>same as above for<br>flood or furrow<br>irrigation with heavy<br>contact                                                                                                                                              | Sprinkler irrigation<br>with poor water quality<br>$(10^6-10^8 \text{ total} \text{ coliforms/100 ml})$ and<br>high aerosol exposure<br>associated with<br>increased rates of<br>infection; use of<br>partially treated water<br>$(10^4-10^5 \text{ hermotolerant} \text{ coliforms/100 ml or} \text{ less})$ in sprinkler<br>irrigation is not<br>associated with<br>increased viral                                                                                                       | No data on<br>transmission of<br>protozoan infections<br>during sprinkler<br>irrigation with<br>wastewater                                                                                                                             |  |  |

|                                                  |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       | infection rates                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Health-based<br>targets for<br>wastewater use in | Exposure scenario                                                                                                                                                                                                                                                                                                                                                                         | Health-based target<br>(disability adjusted<br>life year (DALY) per<br>person per year)                                                                                                                                                                                                               | Log10 pathogen<br>reduction neededa                                                                                                                                                                                                                                                      | Number of helminth<br>eggs per litre                                                                                                                                                                                                                                                                        |
| agriculture                                      | Unrestricted<br>irrigation<br>Lettuce                                                                                                                                                                                                                                                                                                                                                     | $\leq 10^{-6}$ a                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                        | $\leq l_{b,c}$                                                                                                                                                                                                                                                                                              |
|                                                  | Restricted irrigation<br>Highly mechanized<br>Labour intensive                                                                                                                                                                                                                                                                                                                            | ≤10 <sup>-6</sup> a                                                                                                                                                                                                                                                                                   | 3<br>4                                                                                                                                                                                                                                                                                   | $\leq l_{b,c}$<br>$\leq l_{b,c}$<br>$\leq l_{b,c}$                                                                                                                                                                                                                                                          |
|                                                  | Localized (drip)<br>irrigation<br>High-growing crops<br>Low-growing crops<br>a Rotavirus reduction. The I<br>6-7 log unit pathogen red<br>protection measures); for<br>b When children under 15 a<br>≤0.1 egg per litre, protect<br>c An arithmetic mean shoul<br>litre should be obtained fo<br>(i.e. with >10 eggs per lith<br>hydraulic retention time c<br>d No crops to be picked up | ≤10° a<br>health-based target can be<br>luction (obtained by a com<br>restricted irrigation, it is a<br>re exposed, additional hea<br>ive equipment such as glo<br>d be determined througho<br>or at least 90% of samples<br>re). With some wastewate<br>can be used as a surrogate<br>from the soil. | 2<br>4<br>achieved, for unrestricted<br>bination of wastewater tre<br>chieved by a 2–3 log unit<br>11th protection measures sh<br>ves or shoes/boots or chen<br>ut the irrigation season. The<br>in order to allow for the o<br>r treatment processes (e.g.<br>to assure compliance with | No recommendation $_{d} \leq 1_{c}$<br>and localized irrigation, by a<br>atment and other health<br>pathogen reduction.<br>oould be used (e.g. treatment to<br>otherapy).<br>the mean value of $\leq 1$ egg per<br>ccasional highvalue sample<br>waste stabilization ponds), the<br>$\leq 1$ egg per litre. |
| Maximum<br>tolerable soil                        | Chemical<br>Floment                                                                                                                                                                                                                                                                                                                                                                       | Soil concentration                                                                                                                                                                                                                                                                                    | (mg/kg)                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                             |
| concentrations of                                | Antimony                                                                                                                                                                                                                                                                                                                                                                                  | 36                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
| various toxic                                    | Arsenic<br>Parium <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                            | 8 202                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
| chemicals based                                  | Beryllium <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                    | 0.2                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
| on human                                         | Boron <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                        | 1.7                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
| bastic materia                                   | Eluorine                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>635                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
| nealth protection                                | Lead                                                                                                                                                                                                                                                                                                                                                                                      | 84                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Mercury                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Molybdenum"<br>Nickel                                                                                                                                                                                                                                                                                                                                                                     | 0.6<br>107                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Selenium                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Silver<br>Thallium <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Vanadium <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                     | 0.3<br>47                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Organic compound                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Aldrin<br>Benzene                                                                                                                                                                                                                                                                                                                                                                         | 0.48                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Chlordane                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                             | 211                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | 2.4-D                                                                                                                                                                                                                                                                                                                                                                                     | 0.47<br>0.25                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | DDT                                                                                                                                                                                                                                                                                                                                                                                       | 1.54                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Dioxins                                                                                                                                                                                                                                                                                                                                                                                   | 0.00012                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Heptachlor                                                                                                                                                                                                                                                                                                                                                                                | 0.18                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Lindane                                                                                                                                                                                                                                                                                                                                                                                   | 1.40                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Methoxychlor                                                                                                                                                                                                                                                                                                                                                                              | 4.27                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | PAHs (as benzo[ <i>a</i> ]pyrene<br>PCBs                                                                                                                                                                                                                                                                                                                                                  | ) 16<br>0.89                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                         | 14                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Phthalate                                                                                                                                                                                                                                                                                                                                                                                 | 13733                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Styrene                                                                                                                                                                                                                                                                                                                                                                                   | 41<br>0.68                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | 2,4,5-T                                                                                                                                                                                                                                                                                                                                                                                   | 3.82                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                         | 1.25                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Toluene                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Toxaphene                                                                                                                                                                                                                                                                                                                                                                                 | 0.0013                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | Trichloroethane                                                                                                                                                                                                                                                                                                                                                                           | 0.68                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |
|                                                  | a The computed numerical                                                                                                                                                                                                                                                                                                                                                                  | limits for these elements a                                                                                                                                                                                                                                                                           | re within the ranges that a                                                                                                                                                                                                                                                              | re typical for soils.                                                                                                                                                                                                                                                                                       |

| Main Policy        | • Policv:                                                            |                          |                         |                               |  |  |
|--------------------|----------------------------------------------------------------------|--------------------------|-------------------------|-------------------------------|--|--|
| Issues             | Are there clear policies on the use of wastewater? Is wastewater use |                          |                         |                               |  |  |
|                    | encouraged or dise                                                   | couraged?                |                         |                               |  |  |
|                    | • Legislation:                                                       |                          |                         |                               |  |  |
|                    | Is the use of west                                                   | in logislation? What     | t are the rights and    |                               |  |  |
|                    | Is the use of wastewater governed in legislation? what are the ri    |                          |                         |                               |  |  |
|                    | responsibilities of                                                  | different staker         | loiders? Does a defin   | lea jurisalcuon               |  |  |
|                    | exist on the use of wastewater?                                      |                          |                         |                               |  |  |
|                    | • Institutional fram                                                 | nework:                  |                         |                               |  |  |
|                    | Which ministry/ag                                                    | gency, organizat         | tions, etc. have the at | ithority to control           |  |  |
|                    | the use of wastewa                                                   | ater at the nation       | nal level and at the d  | istrict/community             |  |  |
|                    | level? Are the resp                                                  | ponsibilities of a       | different ministries/ a | igencies clear? Is            |  |  |
|                    | there one lead min                                                   | istry, or are the        | re multiple ministrie   | s/ agencies with              |  |  |
|                    | overlapping jurisd                                                   | lictions? Which          | ministry/agency is re   | esponsible for                |  |  |
|                    | developing regula                                                    | tions? Which m           | inistry/agency monit    | tors compliance               |  |  |
|                    | with regulations?                                                    | Which ministry           | /agency enforces the    | regulations?                  |  |  |
|                    | • Regulations:                                                       |                          |                         |                               |  |  |
|                    | Do regulations exi                                                   | ist? Are the curi        | rent regulations adeq   | uate to meet                  |  |  |
|                    | wastewater use ob                                                    | jectives (protec         | t public health, preve  | ent environmental             |  |  |
|                    | damage, meet pro                                                     | duce quality sta         | ndards for domestic     | and international             |  |  |
|                    | trade, preserve liv                                                  | elihoods, consei         | rve water and nutrier   | nts, etc.)? Are the           |  |  |
|                    | current regulation                                                   | s being impleme          | ented? Is regulatory of | compliance being              |  |  |
|                    | enforced? Which                                                      | ministry/agency          | enforces the regulat    | ions?                         |  |  |
| Volume 3: Wastew   | vater and excreta u                                                  | ise in aquacult          | ure                     |                               |  |  |
| Scope              | The primary aim of                                                   | of the Guideline         | s is to maximize pub    | lic health                    |  |  |
|                    | protection and the                                                   | beneficial use of        | of important resource   | es. The purpose of            |  |  |
|                    | this volume is to e                                                  | ensure that waste        | e-fed aquacultural ac   | tivities are made as          |  |  |
|                    | safe as possible so                                                  | that the nutrition       | onal and household f    | ood security                  |  |  |
|                    | benefits can be sha                                                  | ared widely in a         | iffected communities    | . Thus, the adverse           |  |  |
|                    | health impacts of                                                    | waste-fed aquac          | culture should be care  | efully weighed                |  |  |
|                    | against the benefit                                                  | ts to health and         | the environment asso    | ciated with these             |  |  |
|                    | practices. Yet this                                                  | is not a matter          | of simple trade-offs.   | Wherever waste-               |  |  |
|                    | fed aquaculture co                                                   | ontributes signif        | icantly to food secur   | ity and nutritional           |  |  |
|                    | status, the point is                                                 | to identify asso         | ciated hazards, defin   | e the risks they              |  |  |
|                    | represent to vulne                                                   | rable groups and         | d design measures ai    | med at reducing               |  |  |
|                    | these risks.                                                         |                          |                         |                               |  |  |
|                    | This volume of the                                                   | e Guidelines is i        | intended to be used a   | s the basis for the           |  |  |
|                    | development of in                                                    | ternational and          | national approaches     | (including                    |  |  |
|                    | standards and regu                                                   | ulations) to man         | aging the health risk   | s from hazards                |  |  |
|                    | associated with wa                                                   | aste-fed aquacu          | lture, as well as prov  | iding a framework             |  |  |
|                    | for national and lo                                                  | cal decision-ma          | aking. The information  | on provided is                |  |  |
|                    | applicable to inter                                                  | tional waste-fee         | d aquacultural praction | ces but also should           |  |  |
|                    | be relevant to the                                                   | unintentional us         | se of faecally contam   | inated waters for             |  |  |
|                    | aquaculture.                                                         |                          |                         |                               |  |  |
| Health-based       | Exposed group                                                        | Hazard                   | Health-hased targeta    | Health protection             |  |  |
| targets for waste- | Exposed group                                                        | 11a2ai U                 | incanin-based taigeta   | measure                       |  |  |
| fed aquaculture    | Consumers, workers<br>and local communities                          | Excreta-related diseases | 10 <sup>-6</sup> DALY   | Wastewater treatment          |  |  |
|                    | una iocai communities                                                | 41504505                 |                         | Health and hygiene            |  |  |
|                    |                                                                      |                          |                         | promotion<br>Chemotherapy and |  |  |
|                    |                                                                      |                          |                         | immunization                  |  |  |
|                    | Consumers                                                            | Excreta-related          | 10 <sup>-6</sup> DALY   | Produce restriction           |  |  |
|                    | I                                                                    | uiseases                 |                         | vv dSlC                       |  |  |

|                   |                                                                              | Foodborne trematodes       | Absence of trematode infections           | application/timing<br>Depuration Food<br>handling and |  |  |
|-------------------|------------------------------------------------------------------------------|----------------------------|-------------------------------------------|-------------------------------------------------------|--|--|
|                   |                                                                              | Chemicals                  | Tolerable daily intakes                   | preparation Produce                                   |  |  |
|                   |                                                                              |                            | as specified by the<br>Codex Alimentarius | washing/disinfection<br>Cooking foods                 |  |  |
|                   | Washees and Is all                                                           | Essente militad            | Commission                                |                                                       |  |  |
|                   | workers and local communities                                                | Excreta-related pathogens  | 10° DALY                                  | Access control Use of personal protective             |  |  |
|                   |                                                                              | Skin irritants             | Absence of skin                           | equipment Disease                                     |  |  |
|                   |                                                                              |                            | disease                                   | Intermediate host                                     |  |  |
|                   |                                                                              | Schistosomes               | Absence of                                | control Access to safe                                |  |  |
|                   |                                                                              |                            | senistosomiasis                           | sanitation at                                         |  |  |
|                   |                                                                              | Vector-borne               | Absence of                                | aquacultural facilities                               |  |  |
|                   |                                                                              | panlogens                  | vectorbonne disease                       | communities Reduced                                   |  |  |
|                   |                                                                              |                            |                                           | vector contact<br>(insecticide-treated                |  |  |
|                   |                                                                              |                            |                                           | nets, repellents)                                     |  |  |
|                   | a Absence of disease associ                                                  | ated with waste-fed aquacu | lture-related exposures.                  |                                                       |  |  |
| Main Policy       | In developing a na                                                           | tional policy fram         | ework to facilitate                       | safe waste-fed                                        |  |  |
| Issues            | aquaculture, it is in                                                        | mportant to define         | the objectives of                         | the policy, assess                                    |  |  |
|                   | the current policy                                                           | environment and o          | develop a national                        | approach.                                             |  |  |
|                   | National approach                                                            | es for safe waste-         | fed aquacultural p                        | actices based on                                      |  |  |
|                   | the WHO Guidelin                                                             | nes will protect pu        | blic health the mo                        | st when they are                                      |  |  |
|                   | integrated into cor                                                          | nprehensive public         | c health programm                         | nes that include                                      |  |  |
|                   | other sanitary mea                                                           | sures, such as hea         | lth and hygiene pr                        | omotion and                                           |  |  |
|                   | improving access                                                             | to safe drinkingwa         | ater and adequate s                       | anitation. Other                                      |  |  |
|                   | complementary pr                                                             | ogrammes, such a           | s chemotherapy ca                         | impaigns, should                                      |  |  |
|                   | be accompanied by                                                            | y health promotion         | n/education to char                       | nge behaviours                                        |  |  |
|                   | that would otherw                                                            | ise lead to reinfect       | tion with foodborn                        | e trematodes or                                       |  |  |
|                   | intestinal helminth                                                          | 1S.                        |                                           |                                                       |  |  |
|                   | National approach                                                            | es need to be adap         | oted to the local so                      | ciocultural,                                          |  |  |
|                   | environmental and                                                            | l economic circum          | stances, but they s                       | should be aimed at                                    |  |  |
|                   | progressive impro                                                            | vement of public h         | nealth. Intervention                      | ns that address the                                   |  |  |
|                   | greatest local health threats first should be given the highest priority. As |                            |                                           |                                                       |  |  |
|                   | resources and new data become available, additional health protection        |                            |                                           |                                                       |  |  |
|                   | measures can be introduced.                                                  |                            |                                           |                                                       |  |  |
| Volume 4: Excreta | and greywater us                                                             | e in agriculture           | 1                                         | 1. 1 1/1                                              |  |  |
| Scope             | The primary aim of                                                           | hanaficial was af i        | s to maximize pub                         | lic nealth                                            |  |  |
|                   | this volume is to a                                                          | neuro that the use         | of overets and gra                        | vy stor in                                            |  |  |
|                   | agriculture is mad                                                           | a as safe as possib        | le so that the nutri                      | tional and                                            |  |  |
|                   | household food se                                                            | curity benefits car        | be shared widely                          | in affected                                           |  |  |
|                   | communities Thu                                                              | s the adverse heal         | th impacts of ever                        | reta and greywater                                    |  |  |
|                   | use in agriculture                                                           | should be carefully        | v weighed against                         | the benefits to                                       |  |  |
|                   | health and the env                                                           | ironment associate         | ed with these pract                       | tices Yet this is                                     |  |  |
|                   | not a matter of sin                                                          | ple trade-offs Wl          | herever excreta an                        | d grevwater use                                       |  |  |
|                   | contributes signifi                                                          | cantly to food seci        | urity and nutrition                       | al status, the point                                  |  |  |
|                   | is to identify assoc                                                         | ciated hazards. def        | ine the risks they                        | represent to                                          |  |  |
|                   | vulnerable groups                                                            | and design measu           | res aimed at reduc                        | ing these risks.                                      |  |  |
|                   | Volume 4 of the C                                                            | duidelines is intend       | ded to be used as t                       | he basis for the                                      |  |  |
|                   | development of in                                                            | ternational and na         | tional approaches                         | (including                                            |  |  |
|                   | standards and regu                                                           | lations) to manag          | ing the health risks                      | s from hazards                                        |  |  |
|                   | associated with excreta and greywater use in agriculture. as well as         |                            |                                           |                                                       |  |  |

|                                                                           | providing a framework for national and local decision-making. The<br>information provided is applicable to the intentional use of excreta and<br>greywater in agriculture, but it should also be relevant to their<br>unintentional use. The Guidelines provide an integrated preventive<br>management framework for safety applied from the point of household<br>excreta and greywater generation to the consumption of products grown<br>with treated excreta applied as fertilizers or treated greywater used for<br>irrigation purposes. They describe reasonable minimum requirements of<br>good practice to protect the health of the people using treated excreta or<br>greywater or consuming products grown with these for fertilization or<br>irrigation purposes and provide information that is then used to derive<br>health-based targets. Neither the minimum good practices nor the health-<br>based targets are mandatory limits. The preferred approaches adopted by<br>national or local authorities towards implementation of the Guidelines,<br>including health-based targets, may vary depending on local social,<br>cultural, environmental and economic conditions, as well as knowledge<br>of routes of exposure, the nature and severity of hazards and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                                                                                    |                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verification                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 of neurin                             |                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>ii iiicu</u>                                                          |                                                                                                    |                                                                                                                                                                                                                  |
| monitoring in                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | gram total                                                                                                                                                                                                                                                                                                                                                                                                        | eggs (nu<br>l solids o                                                   | mber per<br>or per litre)                                                                          | E. coli (number per 100 ml)                                                                                                                                                                                      |
| large-scale                                                               | Treated faeces an<br>Greywater for us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd faecal sludge                        | <1/g total s                                                                                                                                                                                                                                                                                                                                                                                                      | solids                                                                   |                                                                                                    | <1000/g total solids                                                                                                                                                                                             |
| treatment systems                                                         | Restricted irrig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ation                                   | <1/litre                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |                                                                                                    | $<10^{5;a}$                                                                                                                                                                                                      |
| of greywater,                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                                                                                    | is limited or regrowth is likely                                                                                                                                                                                 |
| excreta and faecal                                                        | Unrestricted irrestricted | igation of crops                        | <1/litre                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |                                                                                                    | <10 <sup>3</sup><br>Relaxed to <10 <sup>4</sup> for high-                                                                                                                                                        |
| agriculture                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                                                                                    | growing leaf crops or drip                                                                                                                                                                                       |
| agriculture                                                               | <sup>a</sup> These values are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | acceptable due to                       | o the regrowth                                                                                                                                                                                                                                                                                                                                                                                                    | h potentia                                                               | al of <i>E. coli</i> and                                                                           | irrigation<br>d other faecal coliforms in greywater.                                                                                                                                                             |
| Recommendation<br>s for storage<br>treatment of dry<br>excreta and faecal | Treatment<br>Storage;<br>ambient tempera<br>2-20°C<br>Storage;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Criteria<br>1.5–2 ye<br>ture<br>>1 year | a (ears                                                                                                                                                                                                                                                                                                                                                                                                           | Commer<br>Will elim<br>and Salm<br>will redu-<br>levels. So<br>Substanti | nt<br>ninate bacterial<br>conella may ne-<br>ce viruses and<br>ome soil-borne<br>ial to total inac | pathogens; regrowth of <i>E. coli</i><br>ed to be considered if rewetted;<br>parasitic protozoa below risk<br>ova may persist in low numbers.<br>tivation of viruses, bacteria and                               |
| at the<br>household and<br>municipal levels                               | ambient tempera<br>>20-35°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ture                                    | Prycar Substantiar to total macrovation of whiteses, backet<br>protozoa; inactivation of schistosome eggs (<1 m<br>inactivation of nematode (roundworm) eggs, e.g.<br>hookworm ( <i>AncylostomalNecator</i> ) and whipworn<br>( <i>Trichuris</i> ); survival of a certain percentage (10–<br><i>Ascaris</i> eggs (≥4 months), whereas a more or less<br>complete inactivation of <i>Ascaris</i> eggs will occur y |                                                                          |                                                                                                    | of schistosome eggs (<1 month);<br>le (roundworm) eggs, e.g.<br><i>ma/Necator</i> ) and whipworm<br>a certain percentage (10–30%) of<br>is), whereas a more or less<br>f <i>Ascaris</i> eggs will occur within 1 |
|                                                                           | Alkaline treatme<br>pH > 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt during > months                      | >6                                                                                                                                                                                                                                                                                                                                                                                                                | If temper<br>and/or we<br>elimination                                    | rature >35 °C a<br>etter material v<br>on.                                                         | ind moisture <25%, lower pH<br>will prolong the time for absolute                                                                                                                                                |
| Recommended                                                               | Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Storage                                 | Possible                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          | Recommend                                                                                          | led crops                                                                                                                                                                                                        |
| storage times for                                                         | temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | time                                    | pathogens i                                                                                                                                                                                                                                                                                                                                                                                                       | in the                                                                   |                                                                                                    |                                                                                                                                                                                                                  |
| urine mixture <sup>a</sup>                                                | (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (months)                                | urine mixtu<br>after storag                                                                                                                                                                                                                                                                                                                                                                                       | ire<br>ge                                                                |                                                                                                    |                                                                                                                                                                                                                  |
| based on                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≥1                                      | Viruses, pro                                                                                                                                                                                                                                                                                                                                                                                                      | otozoa                                                                   | Food and fod                                                                                       | lder crops that are to be processed                                                                                                                                                                              |
| estimated                                                                 | 4<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≥o<br>≥1                                | V iruses<br>Viruses                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | Food crops the<br>Food crops the                                                                   | hat are to be processed, fodder crops <sup>d</sup> hat are to be processed, fodder crops <sup>d</sup>                                                                                                            |
| pathogen content <sup>o</sup>                                             | $t^{\text{D}}$ 20 $\geq 6$ Probably none All crops <sup>e</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                                                                                    |                                                                                                                                                                                                                  |
| and recommended                                                           | ind recommended a Urine or urine and water. When diluted, it is assumed that the urine mixture has a pH of at least nitrogen concentration of at least 1 g/l.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          | ixture has a pH of at least 8.8 and a                                                              |                                                                                                                                                                                                                  |
| crops for larger                                                          | for larger b Gram-positive bacteria and spore-forming bacteria are not included in the underlying risk assessme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                                                                                    | the underlying risk assessments, but                                                                                                                                                                             |
| systems                                                                   | c A larger system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in this case is a sy                    | vstem where t                                                                                                                                                                                                                                                                                                                                                                                                     | the urine                                                                | s of concern.<br>mixture is use                                                                    | d to fertilize crops that will be                                                                                                                                                                                |
|                                                                           | consumed by in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dividuals other the                     | an members of fodder                                                                                                                                                                                                                                                                                                                                                                                              | of the ho                                                                | usehold from v                                                                                     | whom the urine was collected.                                                                                                                                                                                    |
|                                                                           | e For food crops th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | hat are consumed                        | raw, it is reco                                                                                                                                                                                                                                                                                                                                                                                                   | ommende                                                                  | ed that the urin                                                                                   | e be applied at least one month before                                                                                                                                                                           |
| 1                                                                         | harvesting and that it be incorporated into the ground if the edible parts grow above the soil surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                                                                                    |                                                                                                                                                                                                                  |

| Main Policy | In developing a national policy framework to facilitate the safe use of        |
|-------------|--------------------------------------------------------------------------------|
| Issues      | excreta as fertilizer, it is important to define the objectives of the policy, |
|             | assess the current policy environment and develop a national approach.         |
|             | National approaches for adequate sanitation based on the WHO                   |
|             | Guidelines will protect public health optimally when they are integrated       |
|             | into comprehensive public health programmes that include other sanitary        |
|             | measures, such as health and hygiene promotion and improving access to         |
|             | safe drinkingwater.                                                            |
|             | National approaches need to be adapted to the local sociocultural,             |
|             | environmental and economic circumstances, but they should be aimed at          |
|             | progressive improvement of public health. Interventions that address the       |
|             | greatest local health threats first should be given the highest priority. As   |
|             | resources and new data become available, additional health protection          |
|             | measures can be introduced.                                                    |

| European Legislation |                                                                              |                                                  |  |  |  |  |
|----------------------|------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|
| Official name        | <b>Directive 2000/60/EC</b> of the European Parliament and of the Council of |                                                  |  |  |  |  |
|                      | 23 October 2000 establishing a framework for Community action in the         |                                                  |  |  |  |  |
|                      | field of water policy                                                        |                                                  |  |  |  |  |
|                      |                                                                              |                                                  |  |  |  |  |
|                      | Measures are required under                                                  | the following directives (for the complete list, |  |  |  |  |
|                      | The Drinking Water Div                                                       | t A III the directive).                          |  |  |  |  |
|                      | • The Drinking water Dif<br>(98/83/FC)                                       | ective (80/778/EEC) as amended by Directive      |  |  |  |  |
|                      | The Sewage Sludge Dir                                                        | ective (86/278/EEC)                              |  |  |  |  |
|                      | The Urban Waste-water                                                        | Treatment Directive (91/271/EEC)                 |  |  |  |  |
|                      | • The Integrated Pollution                                                   | Prevention Control Directive (96/61/EC)          |  |  |  |  |
|                      | • The Bathing Water Dire                                                     | ective (76/160/EEC)                              |  |  |  |  |
|                      |                                                                              | ,<br>,                                           |  |  |  |  |
| In force since       | 22. 12. 2000                                                                 |                                                  |  |  |  |  |
| Area of              | All EU member states                                                         |                                                  |  |  |  |  |
| reference            |                                                                              |                                                  |  |  |  |  |
| Scope                | All inland waters (surface- a                                                | nd groundwater), transitional and coastal        |  |  |  |  |
| Manitarina           | waters $S_{\text{tracements}} > 10 \text{ km}^2$ lab                         | $x_{0} = x_{0} > 50$ he                          |  |  |  |  |
| Monitoring           | Streams basins > 10 km , lai                                                 | tes area > 50 na                                 |  |  |  |  |
| Common               | Preventing deterioration of a                                                | ll water bodies                                  |  |  |  |  |
| objective            |                                                                              | in water boules                                  |  |  |  |  |
| Environmental        | Surface waters: Good status the result of a good chemical status and a       |                                                  |  |  |  |  |
| objectives           | good ecological status                                                       |                                                  |  |  |  |  |
|                      | Groundwater: Good status, the result of a good chemical status and a good    |                                                  |  |  |  |  |
|                      | quantitative status                                                          |                                                  |  |  |  |  |
| Thresholds for       | <u>Chemical status</u> : Quality val                                         | ues of 32 priority substances                    |  |  |  |  |
| surface waters       | Ecological status: Slightly d                                                | eviation of undisturbed conditions of phytho-    |  |  |  |  |
| Thresholds for       | Chemical status: Nitrate 50                                                  | crozoodentinos, fisnes                           |  |  |  |  |
| groundwater          | not approved)                                                                | ng/1 and pesticides 0,1 ug/1 (under discussion,  |  |  |  |  |
| groundwater          | Ouantitative status: Groundy                                                 | vater abstraction has to be lower than its       |  |  |  |  |
|                      | creation                                                                     |                                                  |  |  |  |  |
|                      | The Drinking Water D                                                         | irective (1998/83/EC)                            |  |  |  |  |
| Parameters and       |                                                                              |                                                  |  |  |  |  |
| Parametric           | Microbiological parameters:<br>Parameter                                     | Parametric value (number/100 ml)                 |  |  |  |  |
| Values               | Escherichia coli (E. coli)                                                   | 0                                                |  |  |  |  |
|                      | Enerococci                                                                   | 0                                                |  |  |  |  |
|                      | The following applies to water offered for                                   | sale in bottles or containers:                   |  |  |  |  |
|                      | Escherichia coli (E. coli)                                                   | 0/250 ml                                         |  |  |  |  |
|                      | Enterococci<br>Pseudomonas aeruginosa                                        | 0/250 ml<br>0/250 ml                             |  |  |  |  |
|                      | Colony count                                                                 | 22 °C 100/ml                                     |  |  |  |  |
|                      | Colony count                                                                 | 3 / °C 20/mi                                     |  |  |  |  |
|                      | Chemical parameters:                                                         |                                                  |  |  |  |  |
|                      | Parameter<br>Acrylamide                                                      | Parametric value Notes<br>0.10 µg/l Note 1       |  |  |  |  |
|                      | Antimony                                                                     | 5.0 µg/l                                         |  |  |  |  |
|                      | Benzene                                                                      | 10 μg/l                                          |  |  |  |  |

| Benzo(a)pyrene                                      | 0.010 µg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                     |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Dana                                                | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
| DOION                                               | 1.0 mg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                     |
| Bromate                                             | 10 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Note 2                                                                                                                              |
| Cadmium                                             | 5.0 µg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                     |
| Characterist                                        | 50 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                     |
| Cnromium                                            | 50 μg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                     |
| Copper                                              | 2.0 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Note 3                                                                                                                              |
| Cvanide                                             | 50 ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                     |
| 1.2 dishlares (1                                    | 2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
| 1,2-dichloroethane                                  | 3.0 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                     |
| Epichlorohydrin                                     | 0.10 ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note 1                                                                                                                              |
| Fluoride                                            | 1.5  mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                     |
| Fluoride                                            | 1.5 mg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                     |
| Lead                                                | 10 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Notes 3 and 4                                                                                                                       |
| Mercury                                             | 1.0 ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                     |
| Niekol                                              | 20 ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nota 2                                                                                                                              |
| NICKEI                                              | 20 µg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                     |
| Nitrate                                             | 50 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Note 5                                                                                                                              |
| Nitrite                                             | 0.50 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note 5                                                                                                                              |
| Destinidas                                          | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Notes 6 and 7                                                                                                                       |
| Pesticides                                          | 0.10 µg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Notes 6 and 7                                                                                                                       |
| Pesticides — Total                                  | 0.50 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Notes 6 and 8                                                                                                                       |
| Polycyclic aromatic hydrocarbons                    | 0.10 µg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sum of concentrations of specified                                                                                                  |
| i orgegene aromatie ngaroearoons                    | 0.10 µg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sum of concentrations of specified                                                                                                  |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | compounds; Note 9                                                                                                                   |
| Selenium                                            | 10 µg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                     |
| Tetrachloroethene and                               | 10 µg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sum of concentrations of specified                                                                                                  |
|                                                     | 10 µg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sum of concentrations of specified                                                                                                  |
| Trichloroethene                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | parameters                                                                                                                          |
| Trihalomethanes — Total                             | 100 ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sum of concentrations of specified                                                                                                  |
|                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | compounds: Note 10                                                                                                                  |
| ···                                                 | 0.50 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | compounds, ivoite 10                                                                                                                |
| Vinyl chloride                                      | 0.50 μg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note 1                                                                                                                              |
| -                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| Mate 1. The second in the second                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| <i>Note 1</i> . The parametric value refers to the  | residual monomer conce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | invation in the water as calculated according                                                                                       |
| to specifications of the maximum                    | n release from the corresp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | conding polymer in contact with the water.                                                                                          |
| Note 2. Where possible without comprom              | ising disinfection Memb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | per States should strive for a lower value. For                                                                                     |
| Note 2. Where possible, without compton             | (1) $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |
| the water referred to in Article 6                  | (1)(a), $(b)$ and $(d)$ , the value $(a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lue must be met, at the latest, 10 calendar                                                                                         |
| years after the entry into force of                 | f the Directive. The paran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | netric value for bromate from five years after                                                                                      |
| the entry into force of this Direct                 | tive until 10 years after it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s entry into force is 25 µg/l                                                                                                       |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| Note 5. The value applies to a sample of v          | valer intended for numan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | consumption obtained by an adequate                                                                                                 |
| sampling method (1) at the tapar                    | d taken so as to be repres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sentative of a weekly average value ingested                                                                                        |
| by consumers. Where appropriat                      | e the sampling and monit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | toring methods must be applied in a                                                                                                 |
| by consumers, where appropriat                      | e the sampling and monit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | toring methods must be appried in a                                                                                                 |
| harmonised fashion to be drawn                      | upin accordance with Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ticle 7(4). Member States must take account                                                                                         |
| of the occurrence of peak levels                    | that may cause adverse e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ffects on human health.                                                                                                             |
| Note 4. For water referred to in Article 60         | (a) $(b)$ and $(d)$ the value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a must be met, at the latest 15 colondar                                                                                            |
| Note 4. For water referred to in Afficie of         | (a), $(b)$ and $(d)$ , the value $(a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ie must be met, at the latest, 15 calendar                                                                                          |
| years after the entry into force of                 | f this Directive. The para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | metric value for lead from five years after the                                                                                     |
| entry into force of this Directive                  | until 15 years after its en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | try into force is 25 µg/l Member States must                                                                                        |
| chuy into force of uns Directive                    | until 15 years after his en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ury into force is 25 µg/l. Wember States must                                                                                       |
| ensure that all appropriate measure                 | ires are taken to reduce the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ne concentration of lead in water intended for                                                                                      |
| human consumption as much as                        | possible during the perio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d needed to achieve compliance with the                                                                                             |
| numun consumption us much us                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | him a needed to deme ve compliance with the                                                                                         |
| parametric value. when impleme                      | enting the measures to ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nieve compliance with that value Member                                                                                             |
| States must progressively give p                    | riority where lead concen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | trations in water intended for human                                                                                                |
| consumption are highest                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                     |
| consumption are nightest.                           | 41.1 .4 . 6 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |
| <i>Note 5:</i> Member States must ensure that the   | ne condition that [nitrate]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(50 + [nitrite])/3 \le 1$ , the square brackets                                                                                    |
| signifying the concentrations in                    | mg/l for nitrate (NO3) an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d nitrite (NO2), is complied with and that the                                                                                      |
| value of 0,10 mg/l for nitrites is                  | a semulia di with av water t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | reatment works                                                                                                                      |
| value of 0,10 mg/1 for nitrites is                  | complied with ex water th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | reatment works.                                                                                                                     |
| Note 6: 'Pesticides' means:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| — organic insecticides                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| argania h-shi-id                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| - organic nerbicides,                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| <ul> <li>— organic fungicides,</li> </ul>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| - organic nematocides                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| - organic acaricides,                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| <ul> <li>— organic algicides,</li> </ul>            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| - organic rodenticides                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| - organic simicides,                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| <ul> <li>related products (inter alia, g</li> </ul> | rowth regulators) and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ir relevant metabolites, degradation and                                                                                            |
| reaction products. Only those pe                    | sticides which are likely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | to be present in a given supply need be                                                                                             |
| monitored                                           | and the second sec | resource a suppry need of                                                                                                           |
| monitorea.                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| Note 7: The parametric value applies to ea          | ch individual pesticide. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n the case of aldrin, dieldrin, heptachlor and                                                                                      |
| heptachlor epoxide the parametr                     | ic value is 0.030 µg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                   |
| Note & 'Desticidas Total' magazit-                  | m of all individual no-ti-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ides detected and quantified in the                                                                                                 |
| <i>Note</i> o. resticues — rotar means the su       | in or an individual pestic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nues detected and quantified in the                                                                                                 |
| monitoring procedure.                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| Note 9: The specified compounds are:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| hence/h)flue                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| — benzo(b)iluorantnene,                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| <ul> <li>— benzo(k)fluoranthene,</li> </ul>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| - benzo(ghi)nervlene                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| indexe(1.2.21)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| — indeno(1,2,3-cd)pyrene.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| Note 10: Where possible, without compro             | mising disinfection, Men                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ber States should strive for a lower value.                                                                                         |
| The specified compounds are ch                      | loroform bromoform di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bromochloromethane                                                                                                                  |
| hrom-distance dompounds die. er                     | watan nafama 1 to 1 to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\left  \left( f_{1} \right) \left( f_{1} \right) \right _{1}$ and $\left( f_{1} \right) \left( f_{1} \right) \left( f_{1} \right)$ |
| bromodichloromethane. For the                       | water referred to in Artic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0, 1)(a), (b) and (d), the value must be met,                                                                                      |
| at the latest, 10 calendar years af                 | ter the entry into force of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | this Directive. The parametric value for total                                                                                      |
| THMs from five years after the                      | entry into force of this Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rective until 10 years after its entry into force                                                                                   |
|                                                     | and y lines loree of uns DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | to many and the yours after its only into force                                                                                     |
| is 150 µg/1. Member States must                     | ensure that all appropria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | te measures are taken to reduce the                                                                                                 |
| concentration of THMs in water                      | intended for human cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | umption as much as possible during the                                                                                              |
| neriod needed to achieve compli                     | ance with the parametric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | value When implementing the measures to                                                                                             |
| period needed to achieve compli                     | and with the parametric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | variae. when implementing the measures to                                                                                           |

|                  | achieve this value, Member States must progressively give priority to those areas where THM concentrations in water intended for human consumption are highest. |                                                  |                                         |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|--|
|                  |                                                                                                                                                                 |                                                  |                                         |  |
|                  | Indicator parameters                                                                                                                                            |                                                  |                                         |  |
|                  | Parameter                                                                                                                                                       | Parametric value                                 | Notes                                   |  |
|                  | Ammonium                                                                                                                                                        | 0.50  mg/l                                       |                                         |  |
|                  | Chloride                                                                                                                                                        | 250 mg/l                                         | Note 1                                  |  |
|                  | Clostridium perfringens                                                                                                                                         | 0 number/100 ml                                  | Note 2                                  |  |
|                  | (including spores)                                                                                                                                              |                                                  |                                         |  |
|                  | Colour                                                                                                                                                          | Acceptable to consumers and no                   |                                         |  |
|                  | Conductivity                                                                                                                                                    | abnormal change $2500 \text{ m}^{-1}$ at 20 %    | N-4- 1                                  |  |
|                  | Hydrogen ion concentration                                                                                                                                      | $2500 \ \mu\text{S cm}$ at $20^{\circ}\text{C}$  | Notes 1 and 3                           |  |
|                  | Iron                                                                                                                                                            | $\geq 0.5$ and $\geq 9.5$ pri units<br>200 µg/l  | Notes 1 and 5                           |  |
|                  | Manganese                                                                                                                                                       | 50 μg/l                                          |                                         |  |
|                  | Odour Acceptable to consumers                                                                                                                                   | 10                                               |                                         |  |
|                  | and no abnormal change                                                                                                                                          |                                                  |                                         |  |
|                  | Oxidisability                                                                                                                                                   | $5.0 \text{ mg/l } \text{O}_2$                   | Note 4                                  |  |
|                  | Sulphate                                                                                                                                                        | 250 mg/l                                         | Note 1                                  |  |
|                  | Sodium                                                                                                                                                          | 200 mg/l                                         |                                         |  |
|                  | Taste                                                                                                                                                           | abnormal change                                  |                                         |  |
|                  | Colony count 22°                                                                                                                                                | No abnormal change                               |                                         |  |
|                  | Coliform bacteria                                                                                                                                               | 0 number/100 ml                                  | Note 5                                  |  |
|                  | Total organic carbon (TOC)                                                                                                                                      | No abnormal change                               | Note 6                                  |  |
|                  | Turbidity                                                                                                                                                       | Acceptable to consumers and no                   | Note 7                                  |  |
|                  |                                                                                                                                                                 | abnormal change                                  |                                         |  |
|                  | RADIOACTIVITY                                                                                                                                                   |                                                  |                                         |  |
|                  | Tritium<br>Total in directions do no                                                                                                                            | 100 Bq/l                                         | Notes 8 and 10                          |  |
|                  | Total indicative dose                                                                                                                                           | 0.10 mSV/year                                    | Notes 9 and 10                          |  |
|                  | Note 1: The water should not be a                                                                                                                               | ggressive.                                       |                                         |  |
|                  | Note 2: This parameter need not b                                                                                                                               | e measured unless the water originates           | from or is influenced by surface water. |  |
|                  | In the event of non-com                                                                                                                                         | pliance with this parametric value, the          | Member State concerned must             |  |
|                  | investigate the supply to                                                                                                                                       | ensure that there is no potential danger         | to human health arising from the        |  |
|                  | presence of pathogenic                                                                                                                                          | micro-organisms, e.g. cryptosporidium.           | Member States must include the          |  |
|                  | results of all such invest                                                                                                                                      | igations in the reports they must submi          | t under Article 13(2).                  |  |
|                  | <i>Note 3:</i> For still water put into bott                                                                                                                    | containers, the minimum value n                  | nay be reduced to 4,5 pH units. For     |  |
|                  | dioxide the minimum y                                                                                                                                           | alue may be lower                                | artificiariy enficied with carbon       |  |
|                  | Note 4. This parameter need not b                                                                                                                               | e measured if the parameter TOC is and           | lysed                                   |  |
|                  | <i>Note 5:</i> For water put into bottles                                                                                                                       | or containers the unit is number/250 ml          |                                         |  |
|                  | Note 6: This parameter need not b                                                                                                                               | e measured for supplies of less than 10          | 000 m3 a day.                           |  |
|                  | Note 7: In the case of surface water                                                                                                                            | er treatment, Member States should striv         | ve for a parametric value not exceeding |  |
|                  | 1,0 NTU (nephelometrie                                                                                                                                          | e turbidity units) in the water ex treatme       | ent works.                              |  |
|                  | Note 8: Monitoring frequencies to                                                                                                                               | be set later in Annex II.                        |                                         |  |
|                  | Note 9: Excluding tritium, potassi                                                                                                                              | um -40, radon and radon decay product            | s; monitoring frequencies, monitoring   |  |
|                  | methods and the most re                                                                                                                                         | elevant locations for monitoring points          | to be set later in Annex II.            |  |
|                  | <i>Note 10:</i> The proposals required b                                                                                                                        | y Note 8 on monitoring frequencies, an           | a Note 9 on monitoring frequencies,     |  |
|                  | adopted in accordance y                                                                                                                                         | with the procedure laid down in Article          | 12 When elaborating these proposals     |  |
|                  | the Commission shall ta                                                                                                                                         | ke into account <i>inter alia</i> the relevant r | rovisions under existing legislation or |  |
|                  | appropriate monitoring                                                                                                                                          | programmes including monitoring result           | ts as derived from them. The            |  |
|                  | Commission shall subm                                                                                                                                           | it these proposals at the latest within 18       | months following the date referred to   |  |
|                  | in Article 18 of the Dire                                                                                                                                       | ctive.                                           | -                                       |  |
|                  | The Sewage Slud                                                                                                                                                 | ge Directive (86/278/EE(                         | <u>ר</u>                                |  |
| Limit Values for |                                                                                                                                                                 |                                                  | -,                                      |  |
|                  | Parameters Limit values (1                                                                                                                                      | ng/kg of dry matter)                             |                                         |  |
| Heavy-Metal in   | Cadmium 20 to 40                                                                                                                                                |                                                  |                                         |  |
| Sludge           | Copper 1000 to 1750                                                                                                                                             |                                                  |                                         |  |
| ~8-              | Nickel 300 to 400                                                                                                                                               |                                                  |                                         |  |
|                  | Lead 750 to 1200                                                                                                                                                |                                                  |                                         |  |
|                  | ZINC         2500 to 4000           Mercury         16 to 25                                                                                                    |                                                  |                                         |  |
|                  | Chromium <sup>(1)</sup> —                                                                                                                                       |                                                  |                                         |  |
|                  | (1) It is not possible at this stage to                                                                                                                         | o fix limit values for chromium. The Co          | uncil will fix these limit values later |  |
|                  | onthe basis of proposals to be                                                                                                                                  | submitted by the Commission within o             | ne year following notification of this  |  |
|                  | Directive.                                                                                                                                                      |                                                  |                                         |  |
| TI               | he Urban Waste-water                                                                                                                                            | Treatment Directive (91/                         | 271/EEC)                                |  |
| Scope:           | (1) Member States shall end                                                                                                                                     | sure that urban waste water enter                | ring collecting systems shall           |  |
| Artiolo 4        | before discharge be sub                                                                                                                                         | ject to secondary treatment or a                 | n equivalent treatment as               |  |
| ALLUCIC 4        | follows.                                                                                                                                                        | jee to see that y troutment of a                 |                                         |  |
|                  | 10110 # 5.                                                                                                                                                      |                                                  |                                         |  |

|                  | - at the latest by 31 December 2000 for all discharges from agglomerations of more |                                                |                                                     |                                                      |  |  |  |  |
|------------------|------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|--|--|--|--|
|                  | than 15 000 p.e., $-$ at the latest by                                             | 31 December 2005 for                           | all discharges from a                               | alomerations of                                      |  |  |  |  |
|                  | between 10 000 ar                                                                  | nd 15 000 p.e.                                 | an uisenarges nom ag                                | giomerations of                                      |  |  |  |  |
|                  | — at the latest by                                                                 | 31 December 2005 for                           | discharges to fresh-wa                              | ater and estuaries from                              |  |  |  |  |
|                  | agglomerations of                                                                  | between 2 000 and 10                           | 000 p.e.                                            |                                                      |  |  |  |  |
|                  | (2) Urban waste water                                                              | discharges to waters s                         | situated in high mounta                             | in regions (over 1 500                               |  |  |  |  |
|                  | m above sea level                                                                  | ) where it is difficult to                     | apply an effective bio                              | logical treatment due                                |  |  |  |  |
|                  | in paragraph (1) r                                                                 | provided that detailed s                       | tudies indicate that suc                            | the discharges do not                                |  |  |  |  |
|                  | adversely affect th                                                                | e environment.                                 |                                                     | an anothangeo ao not                                 |  |  |  |  |
|                  |                                                                                    |                                                |                                                     |                                                      |  |  |  |  |
| Requirements     | Parameters                                                                         | Concentration                                  | Minimum percentage of                               | Reference method of                                  |  |  |  |  |
| for discharges   |                                                                                    |                                                | reduction <sup>(1)</sup>                            | measurement                                          |  |  |  |  |
| from urban       | Biochemical oxygen<br>demand (BOD <sub>5</sub> at 20°C)                            | 25 mg/l O <sub>2</sub>                         | 70-90, 40 under Article<br>4 (2)                    | Homogenized,<br>unfiltered undecanted                |  |  |  |  |
| waste water      | without nitrification <sup>(2)</sup>                                               |                                                | (2)                                                 | sample. Determination                                |  |  |  |  |
| treatment plants |                                                                                    |                                                |                                                     | of dissolved oxygen                                  |  |  |  |  |
|                  |                                                                                    |                                                |                                                     | day incubation at 20 °C                              |  |  |  |  |
|                  |                                                                                    |                                                |                                                     | $\pm 1$ °C, in complete darkness Addition of a       |  |  |  |  |
|                  |                                                                                    |                                                |                                                     | nitrification inhibitor                              |  |  |  |  |
|                  | Chemical oxygen<br>demand (COD)                                                    | 125 mg/l O <sub>2</sub>                        | 75                                                  | Homogenized,<br>unfiltered undecanted                |  |  |  |  |
|                  |                                                                                    |                                                |                                                     | sample Potassium                                     |  |  |  |  |
|                  | Total suspended solids                                                             | $35 \text{ mg/l}^{(3)}$                        | 90 <sup>(3)</sup>                                   | dichromate<br>— Filtering of a                       |  |  |  |  |
|                  | i our ousponded sonds                                                              | <i>20 mg/1</i>                                 |                                                     | representative sample                                |  |  |  |  |
|                  |                                                                                    | 35  under Article 4 (2)<br>(> 10 000 p.e.)     | 90 under Article 4 (2) (more than $10\ 000\ p.e.$ ) | through a 0,45 $\mu$ m filter<br>membrane. Drying at |  |  |  |  |
|                  |                                                                                    | ( · · · · · · · · · · · · · · · · · · ·        | ( · · · · · · · · · · · · · · · · · · ·             | 105 °C and weighing                                  |  |  |  |  |
|                  |                                                                                    | 60  under Article 4 (2)<br>(2 000-10 000 p.e.) | $(2\ 000-10\ 000\ p.e.)$                            | — Centrifuging of a                                  |  |  |  |  |
|                  |                                                                                    | ( <b>r</b> )                                   | ( F)                                                | representative sample                                |  |  |  |  |
|                  |                                                                                    |                                                |                                                     | (for at least five mins<br>with mean acceleration    |  |  |  |  |
|                  |                                                                                    |                                                |                                                     | of 2800 to 3200 g),                                  |  |  |  |  |
|                  |                                                                                    |                                                |                                                     | drying at 105 °C and<br>weighing                     |  |  |  |  |
|                  | (1) Reduction in relation to $(2)$ The approximation for $(2)$                     | the load of the influent.                      | tetel energie erstern (TOC                          | )                                                    |  |  |  |  |
|                  | (Z) The parameter can be re<br>(TOD) if a relationship                             | can be established between                     | $BOD_5$ and the substitute part                     | rameter.                                             |  |  |  |  |
|                  | (3) This requirement is opti                                                       | onal.                                          |                                                     |                                                      |  |  |  |  |
| Discharge into   |                                                                                    | <b>a</b>                                       |                                                     |                                                      |  |  |  |  |
| Sensitive Areas  | Parameters                                                                         | Concentration                                  | Minimum percentage of reduction <sup>(1)</sup>      | Reference method of<br>measurement                   |  |  |  |  |
|                  | Total phosphorus                                                                   | 2 mg/l                                         | 80                                                  | Molecular absorption                                 |  |  |  |  |
|                  |                                                                                    | $(10\ 000\ -100\ 000\ p.e.)$                   |                                                     | spectrophotometry                                    |  |  |  |  |
|                  |                                                                                    | 1 mg/l                                         |                                                     |                                                      |  |  |  |  |
|                  | Total nitrogen <sup>(2)</sup>                                                      | (more than 100 000 p.e.)<br>15 mg/l            | 70-80                                               | Molecular absorption                                 |  |  |  |  |
|                  | U U                                                                                | $(10000 - 100000 \text{p.e.})^{(3)}$           |                                                     | spectrophotometry                                    |  |  |  |  |
|                  |                                                                                    | 10 mg/l                                        |                                                     |                                                      |  |  |  |  |
|                  |                                                                                    | $(> 100000 \text{ p.e.})^{(3)}$                |                                                     |                                                      |  |  |  |  |
|                  | (2) Total nitrogen means the                                                       | e sum of total Kjeldahl nitro                  | gen (organic and ammoniac                           | al nitrogen) nitrate-nitrogen                        |  |  |  |  |
|                  | and nitrite-nitrogen.                                                              | ······································         |                                                     |                                                      |  |  |  |  |
|                  | requirements for nitrog                                                            | gen may be checked using da                    | aily averages when it is prov                       | ed, in accordance with                               |  |  |  |  |
|                  | Annex I, paragraph D.                                                              | 1, that the same level of prot                 | ection is obtained. In this ca                      | se, the daily average must                           |  |  |  |  |
|                  | biological reactor is su                                                           | perior or equal to 12 °C. The                  | e conditions concerning temp                        | perature could be replaced                           |  |  |  |  |
|                  | by a limitation on the t                                                           | ime of operation to take acco                  | ount of regional climatic cor                       | ditions.                                             |  |  |  |  |
| The I            | ntegrated Pollution                                                                | n Prevention Cont                              | trol Directive (96/                                 | 61/EC)                                               |  |  |  |  |
| Considerations   | 1. the use of low-wast                                                             | e technology;                                  |                                                     | /                                                    |  |  |  |  |
| when             | 2. the use of less haza                                                            | rdous substances;                              |                                                     |                                                      |  |  |  |  |
|                  | 1.3. the furthering of red                                                         | covery and recycling or                        | t substances generated                              | and used in the                                      |  |  |  |  |

| 1                |                                                               |                                                                                                                   |                   |                    |                           |  |  |  |
|------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|---------------------------|--|--|--|
| determining best | process and o                                                 | f waste, where ap                                                                                                 | propriate;        |                    |                           |  |  |  |
| available        | 4. comparable pro                                             | ocesses, facilities                                                                                               | or methods of c   | peration which h   | have been tried with      |  |  |  |
| techniques       | success on an                                                 | industrial scale;                                                                                                 |                   |                    |                           |  |  |  |
|                  | 5. technological a                                            | idvances and char                                                                                                 | nges in scientifi | c knowledge and    | understanding;            |  |  |  |
|                  | 6. the nature, effe                                           | ects and volume o                                                                                                 | the emissions     | concerned;         |                           |  |  |  |
|                  | 7. the commissioning dates for new or existing installations; |                                                                                                                   |                   |                    |                           |  |  |  |
|                  | 8. the length of the                                          | 8. the length of time needed to introduce the best available technique;                                           |                   |                    |                           |  |  |  |
|                  | 9. the consumption                                            | b. the consumption and nature of raw materials (including water) used in the process and their energy efficiency: |                   |                    |                           |  |  |  |
|                  | 10. the need to pr                                            | revent or reduce to                                                                                               | o a minimum th    | e overall impact   | of the emissions on the   |  |  |  |
|                  | environment                                                   | and the risks to it;                                                                                              | ,                 | Ĩ                  |                           |  |  |  |
|                  | 11. the need to pr                                            | event accidents a                                                                                                 | nd to minimize    | the consequence    | s for the                 |  |  |  |
|                  | environment;                                                  | 11.1 11 4                                                                                                         | о · ·             | · · • · ·          | 1 1((0) 1                 |  |  |  |
|                  | 12. the information                                           | on published by the                                                                                               | ne Commission     | pursuant to Artic  | the 16 $(2)$ or by        |  |  |  |
|                  | international                                                 | organizations.                                                                                                    |                   |                    |                           |  |  |  |
| Main Polluting   | Water                                                         |                                                                                                                   |                   |                    |                           |  |  |  |
| Substances       | 1. Organonaloger                                              | 1. Organohalogen compounds and substances which may form such compounds in the                                    |                   |                    |                           |  |  |  |
|                  | aquatic environment                                           |                                                                                                                   |                   |                    |                           |  |  |  |
|                  | 2. Organotin compounds                                        |                                                                                                                   |                   |                    |                           |  |  |  |
|                  | 4 Substances and                                              | pounds<br>I preparations wh                                                                                       | ich have been n   | roved to possess   | carcinogenic or           |  |  |  |
|                  | 4. Substances and<br>mutagenic pro                            | operfies or proper                                                                                                | ties which may    | affect reproducti  | on in or via the aquatic  |  |  |  |
|                  | environment                                                   | opennes or proper                                                                                                 | ties which may    | uneerreproduced    | on in or the the uquate   |  |  |  |
|                  | 5. Persistent hvdr                                            | ocarbons and per                                                                                                  | sistent and bioa  | ccumulable orga    | nic toxic substances      |  |  |  |
|                  | 6. Cyanides                                                   | F-                                                                                                                |                   | 0                  |                           |  |  |  |
|                  | 7. Metals and the                                             | ir compounds                                                                                                      |                   |                    |                           |  |  |  |
|                  | 8. Arsenic and its                                            | compounds                                                                                                         |                   |                    |                           |  |  |  |
|                  | 9. Biocides and p                                             | lant health produc                                                                                                | ets               |                    |                           |  |  |  |
|                  | 10. Materials in s                                            | uspension                                                                                                         |                   |                    |                           |  |  |  |
|                  | 11. Substances w                                              | hich contribute to                                                                                                | eutrophication    | (in particular, ni | trates and phosphates)    |  |  |  |
|                  | 12. Substances w                                              | hich have an unfa                                                                                                 | vourable influe   | nce on the oxyge   | en balance (and can be    |  |  |  |
|                  | measured usin                                                 | ng parameters suc                                                                                                 | ch as BOD, COI    | D, etc.).          |                           |  |  |  |
|                  | The Bat                                                       | hing Water D                                                                                                      | irective (200     | 6/7/EC)            |                           |  |  |  |
| Hygienic         | For inland waters                                             |                                                                                                                   |                   |                    |                           |  |  |  |
| Parameters       | Parameter                                                     | Excellent quality                                                                                                 | Good quality      | Sufficient         | Reference                 |  |  |  |
|                  |                                                               |                                                                                                                   |                   |                    | methods of                |  |  |  |
|                  | Intectinal                                                    | 200 (*)                                                                                                           | 400 (*)           | 330 (**)           | analysis<br>ISO 7899 1 or |  |  |  |
|                  | enterococci                                                   | 200()                                                                                                             | 400()             | 330()              | ISO 7899-2                |  |  |  |
|                  | (cfu/100 ml)                                                  |                                                                                                                   |                   |                    |                           |  |  |  |
|                  | Escherichia coli                                              | 500 (*)                                                                                                           | 1000 (*)          | 900 (**)           | ISO 9308-3 or             |  |  |  |
|                  | (eru/100 mi)                                                  |                                                                                                                   |                   |                    | 150 9508-1                |  |  |  |
|                  | For coastal waters a                                          | nd transitional water                                                                                             | rs                |                    |                           |  |  |  |
|                  | Parameter                                                     | Excellent quality                                                                                                 | Good quality      | Sufficient         | Reference<br>methods of   |  |  |  |
|                  |                                                               |                                                                                                                   |                   |                    | analysis                  |  |  |  |
|                  | Intestinal                                                    | 100 (*)                                                                                                           | 200 (*)           | 185 (**)           | ISO 7899-1 or             |  |  |  |
|                  | enterococci<br>(cfu/100 ml)                                   |                                                                                                                   |                   |                    | ISO 7899-2                |  |  |  |
|                  | Escherichia coli                                              | 250 (*)                                                                                                           | 500 (*)           | 500 (**)           | ISO 9308-3 or             |  |  |  |
|                  | (cfu/100 ml)                                                  |                                                                                                                   | . /               | × /                | ISO 9308-1                |  |  |  |
|                  | (*) Based upon a 95-<br>(**) Based upon a 90                  | percentile evaluation.                                                                                            |                   |                    |                           |  |  |  |
|                  |                                                               | percentric evaluation                                                                                             | •                 |                    |                           |  |  |  |

|               | MEDA Countries                                                                                                                                      |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Area of       | MEDAWARE project ( <u>http://www.uest.gr/medaware</u> ),                                                                                            |
| reference     | national laws and directives                                                                                                                        |
| Scope         | This table gives an overview of the existing legislative in the MEDA partner                                                                        |
|               | • Equation                                                                                                                                          |
|               | • Egypt,<br>• Jordan                                                                                                                                |
|               | <ul> <li>Morocco</li> </ul>                                                                                                                         |
|               | <ul> <li>Tunisia</li> </ul>                                                                                                                         |
|               | • Turkey                                                                                                                                            |
|               |                                                                                                                                                     |
| Mediterranean | Because of the absence of comprehensive international guidelines and of a                                                                           |
| guidelines    | scientific consensus, a proposal of common guidelines on water reuse in all                                                                         |
|               | Mediterranean countries should be made. These guidelines, proposed by                                                                               |
|               | Bahri and Brissaud (2003) and Blumenthal et al. (2000) are based on the                                                                             |
|               | consideration that:                                                                                                                                 |
|               | (a) an agricultural medicertanean market is developing with large amounts of agricultural products (vegetables, fruits, etc.) imported and exported |
|               | among Europe and other Mediterranean countries:                                                                                                     |
|               | (b) tourism is an essential part of the economic activity of the region; its                                                                        |
|               | development might be jeopardized in the long term by disease outbreaks                                                                              |
|               | linked to wastewater mismanagement;                                                                                                                 |
|               | (c) there is a growing concern of consumers about the food quality and health                                                                       |
|               | hazards;                                                                                                                                            |
|               | (d) unfair competition among farmers should be avoided.                                                                                             |
|               | Mediterranean guidelines are minimum requirements which should constitute                                                                           |
|               | the basis of water reuse regulations in every country of the region. Wealthy                                                                        |
|               | countries might wish higher protection. Due to late development of                                                                                  |
|               | wastewater treatment in several countries, all of them cannot be expected to                                                                        |
|               | comply with the guidelines within the same time frame. However, every                                                                               |
|               | country could commit itself to reach the guidelines within this period                                                                              |
|               | depending on its current equipment and financial capacities. Only four                                                                              |
|               | categories of reclaimed water uses are considered, apart from groundwater                                                                           |
|               | cost effective water reuse into account. Water quality criteria are proposed                                                                        |
|               | for non potable water reuse categories I to IV.                                                                                                     |
|               | (a) Category I: urban and residential reuses, landscape and recreational                                                                            |
|               | impoundments.                                                                                                                                       |
|               | (b) Category II: unrestricted irrigation, landscape impoundments (contact                                                                           |
|               | with water not allowed), and industrial reuses.                                                                                                     |
|               | (c) Category III: restricted agricultural irrigation.                                                                                               |
|               | (d) Category IV: Infigation with recycled water application systems or<br>methods (drin, subsurface, etc) providing a high degree of protection     |
|               | against contamination and using water more efficiently                                                                                              |
|               | against containination and using water more enterently.                                                                                             |
|               | Groundwater recharge guidelines depend on whether the aquifer water is                                                                              |
|               | potable or not, the intended use of non potable recharged aquifer, the                                                                              |
|               | technique of recharge and the hydrogeological context.                                                                                              |
|               |                                                                                                                                                     |

|   | (Source: Adapted from <u>Bahri</u> and B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rissaud, 2003                                                                                                           | )                                                                                     |                                                                                            |                                                                                                                                                                                                                                                         |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Water category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Intestinal<br>nematode <sup>a</sup><br>(No. eggs per<br>liter)                                                          | a<br>FC or<br>E. coli <sup>b</sup><br>(cfu/100<br>ml)                                 | SS <sup>c</sup><br>(mg/L)                                                                  | Wastewater<br>treatment expected<br>to meet the criteria                                                                                                                                                                                                |
|   | Category I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                       | 1                                                                                     |                                                                                            | 1                                                                                                                                                                                                                                                       |
|   | <ul> <li>a) Residential reuse: private garden<br/>watering, toilet flushing, vehicle washing.</li> <li>b) Urban reuse: irrigation of areas with<br/>free admittance (greenbelts, parks, golf<br/>courses, sport fields), street cleaning, fire-<br/>fighting, fountains, and other recreational<br/>places.</li> <li>c) Landscape and recreational<br/>impoundments: ponds, water bodies and<br/>streams for recreational purposes, where<br/>incidental contact is allowed (except for<br/>bathing purposes).</li> </ul>                                                                                                                                              | 0 - 0.1 <sup>h</sup>                                                                                                    | 0 – 200 <sup>d</sup>                                                                  | 0 - 10                                                                                     | Secondary treatment<br>+ filtration +<br>disinfection                                                                                                                                                                                                   |
|   | Category II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                         | T                                                                                     | 1                                                                                          |                                                                                                                                                                                                                                                         |
|   | <ul> <li>a) Irrigation of vegetables (surface or sprinkler irrigated), green fodder and pasture for direct grazing, sprinkler-irrigated fruit trees</li> <li>b) Landscape impoundments: ponds, water bodies and ornamental streams, where public contact with water is not allowed.</li> <li>c) Industrial reuse (except for food industry).</li> </ul>                                                                                                                                                                                                                                                                                                                | 0 - 0.1 <sup>h</sup>                                                                                                    | 0 – 1000 <sup>d</sup>                                                                 | 0 - 20<br>0 - 150 <sup>f</sup>                                                             | Secondary treatment<br>or equivalent <sup>g</sup> +<br>filtration +<br>disinfection<br>or Secondary<br>treatment or<br>equivalent <sup>g</sup> + either<br>storage or well-<br>designed series of<br>maturation ponds or<br>infiltration<br>percolation |
|   | Category III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         |                                                                                       | -                                                                                          |                                                                                                                                                                                                                                                         |
|   | fibre,<br>& seed crops, dry fodder, green fodder<br>without<br>direct grazing, crops for canning industry,<br>industrial crops, fruit trees (except<br>sprinkler-irrigated), plant nurseries,<br>ornamental nurseries, wooden areas, green<br>areas with no access to the public.                                                                                                                                                                                                                                                                                                                                                                                      | 0 - 0.1 <sup>h</sup>                                                                                                    | None<br>required                                                                      | 0 - 350<br>0 - 150 <sup>f</sup>                                                            | Secondary treatment<br>or<br>equivalent <sup>g</sup> + a few<br>days storage or<br>Oxidation pond<br>systems                                                                                                                                            |
|   | Category IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                         | 1                                                                                     |                                                                                            |                                                                                                                                                                                                                                                         |
|   | <ul> <li>a) Irrigation of vegetables (except tuber, roots, etc.) with surface and subsurface trickle systems (except micro-sprinklers) using practices (such as plastic mulching, support, etc.) guaranteeing absence of contact between reclaimed water and edible part of vegetables.</li> <li>b) Irrigation of crops in category III with trickle irrigation systems (such as drip, bubbler, microsprinkler and subsurface).</li> <li>c) Irrigation with surface trickle irrigation systems of greenbelts and green areas with no access to the public.</li> <li>d) Irrigation of parks, golf courses, sport fields with sub-surface irrigation systems.</li> </ul> | None required                                                                                                           | None<br>required                                                                      | Pretreatment<br>irrigation tecl<br>than primary                                            | as required by the<br>mology, but not less<br>sedimentation                                                                                                                                                                                             |
|   | (a) Ascaris and Trichuris species and hookwo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | orms; the guideli                                                                                                       | ne limit is also                                                                      | o intended to pro                                                                          | otect against risks from                                                                                                                                                                                                                                |
|   | <ul> <li>(b) FC or E. coli (CFU/100 ml): faecal colifo</li> <li>(c) SS: Suspended solids.</li> <li>(d) Values must be conformed at the 80% of</li> <li>(e) In the case of fruit trees, irrigation should the ground. Sprinkler irrigation should no</li> <li>(f) Stabilization ponds.</li> <li>(g) Such as advanced primary treatment (AP'</li> <li>(h) As very few investigations, if any, have b considered a medium term objective and</li> </ul>                                                                                                                                                                                                                   | rms or Escherich<br>the samples per f<br>stop two weeks<br>ot be used.<br>T).<br>een carried out of<br>is provisionally | ia coli (cfu: c<br>month, minim<br>before fruit is<br>on how to reac<br>replaced by < | olony forming u<br>num number of s<br>picked, and no<br>ch < 0.1 nematoo<br>1 nematode egg | unit/100 ml).<br>amples 5.<br>fruit should be picked of<br>le egg /l, this criterion is<br>l.                                                                                                                                                           |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                         |                                                                                       |                                                                                            |                                                                                                                                                                                                                                                         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                         |                                                                                       |                                                                                            |                                                                                                                                                                                                                                                         |
|   | Eg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ypt                                                                                                                     |                                                                                       |                                                                                            |                                                                                                                                                                                                                                                         |
| 1 | Several ministries are directly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and indired                                                                                                             | ctly invol                                                                            | ved in wat                                                                                 | er quality                                                                                                                                                                                                                                              |

| Framework   | <ul> <li>activities for planning, operations, research, monitoring and regulation. An inventory of these agencies has been prepared to identify their mandates, responsibilities, activities and facilities in connection with water quality. Figure 1 presents a schematic summary of this inventory.</li> <li>The main ministries and agencies are : <ul> <li>Ministry of Water Resources and Irrigation</li> <li>Egyptian Environmental Affairs Agency</li> <li>Ministry of Health and Population</li> <li>Ministry of Agriculture and Land Reclamation</li> <li>Ministry of Scientific Research</li> <li>Ministry of Scientific Research</li> <li>Ministry of Housing, Utilities and New Communities</li> <li>Ministry of Local Development, Organisation for the Restructure and Development of Egyptian Villages (ordev).</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main Policy | The Executive Statutes of the present law shall determine the specifications, controls, and the minimum limits. Establishments wishing to extend the prescribed time limit for making the required adjustments are to submit their applications to the EEAA. The applications shall include justifications for such an extension and the procedures taken for the implementation of the provisions of the attached Executive Regulations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Issues      | Substantial management laws and ministerial decrees were enacted during the seventies era such as Law 48/1982 concerning protection of the River Nile and waterways from pollution , Law 102/1983 concerning natural protectorates , Law 137/ 1981 concerning labor , and Law 3/1982 of urban planning. In 1982, the presidential decree number 631 was issued and the Egyptian Environmental Affairs Agency (EEAA) was established as the coordinating body for environmental policy making in Egypt also participated in various regional and international relevant conventions and protocols. During the last two decades, several environmental plans, such as Environmental Action Plan, 1992, were drafted and several laws and ministerial decrees concerning the environment, such as Law 4/1994 were issued. This law is composed of 10 Sections divided into 100 articles. The introductory section concerns the environment and is divided into General Regulations, Environmental Affairs and Environmental Protection Fund. The 10 sections are entitled as follows: Land pollution control (2); Water pollution control (3); Penalties (4); Concluding regulations (5); Report of the Joint Committee (composed of delegates from the following ministries: Health Affairs, Environmental protection (7); Clarifying note for the drafting of Law on air pollution control (8); Clarifying note for the drafting of Law on air pollution control (9). The latter provides the EEAA broad authority to use of the Environmental Impact Assessment (EIA) process in the context of licensing new expansion, or rehabilitation projects, based upon the following main p |

|                        | 3- location                 |                                                                             |                               |                                             |  |  |  |  |  |
|------------------------|-----------------------------|-----------------------------------------------------------------------------|-------------------------------|---------------------------------------------|--|--|--|--|--|
|                        | 4- Type of ener             | gy used to ope                                                              | erate                         |                                             |  |  |  |  |  |
|                        | Three categorie             | s according to                                                              | severity of pos               | sible environmental impact                  |  |  |  |  |  |
|                        | were identified             | as follows:                                                                 | sevency or pos                |                                             |  |  |  |  |  |
|                        |                             | as 10110ws.                                                                 | L 1 : _ 1                     |                                             |  |  |  |  |  |
|                        | 1- white list pro           | 1- white list projects (for establishments with innor environmental impact) |                               |                                             |  |  |  |  |  |
|                        | 2- grey list proj           | 2- grey list projects (for establishments which may result in substantial   |                               |                                             |  |  |  |  |  |
|                        | environmenta                | environmental impacts)                                                      |                               |                                             |  |  |  |  |  |
|                        | 3- black list pro           | jects (for esta                                                             | blishments which              | ch require full EIA due to their            |  |  |  |  |  |
|                        | potential imp               | act).                                                                       |                               |                                             |  |  |  |  |  |
|                        | 1 1                         | ,                                                                           |                               |                                             |  |  |  |  |  |
|                        | In 1997 a speci             | ific Minister o                                                             | f State for the e             | nvironmental affairs was                    |  |  |  |  |  |
|                        | appointed New               | orthology the I                                                             | Equation onviro               | nmontal parformance shades                  |  |  |  |  |  |
|                        | light on drown              | cluiciess, uie i                                                            | Sgyptian enviro               | A damanstratas little amphasis              |  |  |  |  |  |
|                        | light on drawba             | igni on drawbacks in legislations. Law 4/1994 demonstrates little emphasis  |                               |                                             |  |  |  |  |  |
|                        | to issues, such a           | as environmen                                                               | tal risks and co              | sts whereas little is known about           |  |  |  |  |  |
|                        | the economic at             | nd social costs                                                             | for environment               | ntal compliance, variations in              |  |  |  |  |  |
|                        | environmental               | performance, a                                                              | and carrying cap              | pacity, the existing pollution              |  |  |  |  |  |
|                        | levels of ambie             | nt water and a                                                              | ir quality <sup>(Gomaa,</sup> | S. (1997), "Environmental Policy Making in  |  |  |  |  |  |
|                        | Egypt", AUC, Cairo.)        |                                                                             | 1 5                           |                                             |  |  |  |  |  |
| NAWOAM                 |                             |                                                                             |                               |                                             |  |  |  |  |  |
| (2004)                 | Water quality standar       | rds for drainage wat                                                        | er reuse                      |                                             |  |  |  |  |  |
| (2004).<br>Operational | Boron                       | Unit<br>mg/l                                                                | 3                             |                                             |  |  |  |  |  |
| Operational            | Nitrate (NO <sub>3</sub> )  | mg/l                                                                        | 30                            |                                             |  |  |  |  |  |
| Drainage               | Sulphate (SO <sub>4</sub> ) | mg/l                                                                        | 1000                          |                                             |  |  |  |  |  |
| Water Reuse            | BOD <sub>5</sub>            | mg/l<br>mgQ <sub>2</sub> /l                                                 | 40                            |                                             |  |  |  |  |  |
| Guidelines,            | Fecal Coliform              | (CFU/100ml)                                                                 | 1000                          |                                             |  |  |  |  |  |
| DR-TR-0103-            | Inorganic elements          |                                                                             | -                             |                                             |  |  |  |  |  |
| 006-DR                 | Cadmium                     | mg/l<br>mg/l                                                                | 5<br>0.01                     |                                             |  |  |  |  |  |
|                        | Cobalt                      | mg/l                                                                        | 0.05                          |                                             |  |  |  |  |  |
|                        | Copper                      | mg/l                                                                        | 0.2-1.0                       |                                             |  |  |  |  |  |
|                        | Iron<br>Manganese           | mg/l<br>mg/l                                                                | 5<br>02                       |                                             |  |  |  |  |  |
|                        | Nickel                      | mg/l                                                                        | 0.2                           |                                             |  |  |  |  |  |
|                        | Lead                        | mg/l                                                                        | 5                             |                                             |  |  |  |  |  |
|                        | Organic Compound            | mg/1<br>s                                                                   | 1.0-5.0                       |                                             |  |  |  |  |  |
|                        | Benzene                     | mg/l                                                                        | 2.5                           |                                             |  |  |  |  |  |
|                        | Phenol                      | mg/l                                                                        | 2                             |                                             |  |  |  |  |  |
|                        | Atrazine                    | mg/1                                                                        | 0.01                          |                                             |  |  |  |  |  |
|                        | Irrigation water Qual       | ity Guidelines                                                              |                               |                                             |  |  |  |  |  |
|                        | Parameter                   | Min                                                                         | Max                           | Cropping Restriction                        |  |  |  |  |  |
|                        |                             | < 0.5<br>0.5                                                                | 1.5                           | Moderately sensitive crops                  |  |  |  |  |  |
|                        |                             | 1.5                                                                         | 4                             | Moderately tolerant crops                   |  |  |  |  |  |
|                        | EC dS/m                     | 4                                                                           | 6                             | Tolerant crops                              |  |  |  |  |  |
|                        |                             |                                                                             | 20                            | moderately tolerant crops with reduction in |  |  |  |  |  |
|                        |                             |                                                                             |                               | crop yield                                  |  |  |  |  |  |
|                        |                             | < 5                                                                         | 0                             | Sensitive crops                             |  |  |  |  |  |
|                        | SAR                         | 9                                                                           | 15                            | Moderately sensitive crops                  |  |  |  |  |  |
|                        |                             |                                                                             | > 15                          | Tolerant crops                              |  |  |  |  |  |
|                        | Poron mg/l                  | < 0.7                                                                       | 2                             | Sensitive crops                             |  |  |  |  |  |
|                        | DOION INE/1                 | 0.7                                                                         | >3                            | Tolerant crops                              |  |  |  |  |  |
|                        |                             |                                                                             |                               | -                                           |  |  |  |  |  |
| Criteria and           | Without prejud              | ice to the prov                                                             | isions of Law N               | No. 48 of 1982 concerning the               |  |  |  |  |  |
| Specifications         | Protection of th            | e River Nile a                                                              | nd its Executive              | e Regulations, the discharge of             |  |  |  |  |  |
| when                   | the substances i            | indicated hereu                                                             | under shall not               | exceed the levels indicated in              |  |  |  |  |  |
| Discharged             | the opposite col            | lumn.                                                                       |                               |                                             |  |  |  |  |  |
| into the               | In all cases die            | charge into the                                                             | e marine enviro               | nment is not permitted except at            |  |  |  |  |  |
| Marine                 | a minimum dist              | tance of 500 m                                                              | eters from the                | shoreline and may not interfere             |  |  |  |  |  |
| 1,1011110              | I w minimum and             | MILLER OF 200 III                                                           |                               |                                             |  |  |  |  |  |

| Environment                                                  | nment with fishing zones, bathing zones or nature reserves in order to preserve economic or aesthetic value of the area.                                                 |                                                                                                                                                               |  |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                              | Item                                                                                                                                                                     | A.<br>Maximum limits of Criteria and Specifications<br>(mg/Ltr-unless otherwise indicated.)                                                                   |  |  |  |
|                                                              | Temperature                                                                                                                                                              | Not to exceed 10 degrees over the prevailing rate.                                                                                                            |  |  |  |
|                                                              | PH                                                                                                                                                                       | 6-9                                                                                                                                                           |  |  |  |
|                                                              | Colour                                                                                                                                                                   | Free of colouring materials                                                                                                                                   |  |  |  |
|                                                              | Biochemical Oxygen Demand (BOD)                                                                                                                                          | 60                                                                                                                                                            |  |  |  |
|                                                              | Chemical Oxgyen Demand (COD)                                                                                                                                             | 100                                                                                                                                                           |  |  |  |
|                                                              | Total Dissolved Solids                                                                                                                                                   | 2000                                                                                                                                                          |  |  |  |
|                                                              | Volatile Solids                                                                                                                                                          | 1800                                                                                                                                                          |  |  |  |
|                                                              | Suspended materials                                                                                                                                                      | 60                                                                                                                                                            |  |  |  |
|                                                              | Turbidity                                                                                                                                                                | NTU 50                                                                                                                                                        |  |  |  |
|                                                              | Sulphides                                                                                                                                                                | 1                                                                                                                                                             |  |  |  |
|                                                              | Oil and Greases                                                                                                                                                          | 15                                                                                                                                                            |  |  |  |
|                                                              | Hydrocarbons of oil origin                                                                                                                                               | 0.5                                                                                                                                                           |  |  |  |
|                                                              | Phosphates                                                                                                                                                               | 5                                                                                                                                                             |  |  |  |
|                                                              | Nitrates                                                                                                                                                                 | 40                                                                                                                                                            |  |  |  |
|                                                              | Phenolates                                                                                                                                                               | 1                                                                                                                                                             |  |  |  |
|                                                              | Fluoride                                                                                                                                                                 | 1                                                                                                                                                             |  |  |  |
|                                                              | Aluminium                                                                                                                                                                | 3                                                                                                                                                             |  |  |  |
|                                                              | Ammonia (nitrogen)                                                                                                                                                       | 3                                                                                                                                                             |  |  |  |
|                                                              | Mercury                                                                                                                                                                  | 0.005                                                                                                                                                         |  |  |  |
|                                                              | Lead                                                                                                                                                                     | 0.5                                                                                                                                                           |  |  |  |
|                                                              | Cadmium                                                                                                                                                                  | 0.05                                                                                                                                                          |  |  |  |
|                                                              | Arsenic                                                                                                                                                                  | 0.05                                                                                                                                                          |  |  |  |
|                                                              | Chromium                                                                                                                                                                 | 1                                                                                                                                                             |  |  |  |
|                                                              | Copper                                                                                                                                                                   | 1.5                                                                                                                                                           |  |  |  |
|                                                              | Nickel                                                                                                                                                                   | 01                                                                                                                                                            |  |  |  |
|                                                              | Iron                                                                                                                                                                     | 15                                                                                                                                                            |  |  |  |
|                                                              | Manganese                                                                                                                                                                | 1                                                                                                                                                             |  |  |  |
|                                                              | Zinc                                                                                                                                                                     | 5                                                                                                                                                             |  |  |  |
|                                                              | Silver                                                                                                                                                                   | 01                                                                                                                                                            |  |  |  |
|                                                              | Barium                                                                                                                                                                   | 2                                                                                                                                                             |  |  |  |
|                                                              | Cobalt                                                                                                                                                                   | 2                                                                                                                                                             |  |  |  |
|                                                              | Pesticides                                                                                                                                                               | 0.2                                                                                                                                                           |  |  |  |
|                                                              | Cvanide                                                                                                                                                                  | 0.1                                                                                                                                                           |  |  |  |
|                                                              | Estimated Fecal Coliform Count in 100 cm3                                                                                                                                | 5000                                                                                                                                                          |  |  |  |
|                                                              | Estimated Feed Conform Count in 100 enis                                                                                                                                 | 5000                                                                                                                                                          |  |  |  |
| Law No. 48 of<br>1982                                        | This Law is divided into 20 articles. T<br>water channels: (a) fresh water areas i                                                                                       | To be applied in what is considered include the Nile River, 2 branches and                                                                                    |  |  |  |
| concerning<br>the protection<br>of the Nile<br>River and the | canals with its different degrees; (b) n<br>channels with its different degrees, lal<br>(c) undergroundwater reservoir (art. 1<br>channels solid, liquid or gaseous wate | on fresh water areas include water<br>kes, pools and water in closed system;<br>). It is forbidden to discharge in water<br>rs from private dwellings, shops, |  |  |  |
| water                                                        | commercial, industrial and tourist esta                                                                                                                                  | ablishments or from sanitary drainage                                                                                                                         |  |  |  |
| channels                                                     | without a licence from the Ministry of                                                                                                                                   | f Irrigation according to the Ministry of                                                                                                                     |  |  |  |
| against                                                      | Public Health (art. 2). The owners of                                                                                                                                    | House-Boats and tourist House-Boats                                                                                                                           |  |  |  |
| pollution                                                    | standing on the Nile River or its tow b                                                                                                                                  | branches are requested to find a system                                                                                                                       |  |  |  |
|                                                              | to treat or gather the wastes and disch                                                                                                                                  | arge them in the sewage drain or in the                                                                                                                       |  |  |  |

|                     | sanitary drain (art. 5). T<br>licences for the new how<br>(art. 6). It is forbidden f<br>other to discharge their<br>Precaution is to be take<br>pesticides to abate agric<br>Ministry of Irrigation w<br>11). It is not allowed to<br>any purpose, unless it is<br>Regulation of this Law<br>amount mentioned in th<br>executing regulations o<br>issue the Implementing<br>concerned Ministries w<br>(art. 17). Articles 10-12<br>1962 concerning liquid<br>regulations of this Law | The Ministry of<br>useboats on the<br>for Ferry Boar<br>sewage and be<br>n by the Mini-<br>cultural pests<br>when choosing<br>reuse water of<br>s proved valid<br>will fix due f<br>he attached sta<br>f this Law (an<br>Regulation of<br>ithin three models, 16, and 19 a<br>waste discha<br>(art. 18). | of Irrigation<br>he Nile and<br>t Units user<br>oilge water<br>istry of Age<br>(art. 10). P<br>g herbicides<br>channels di<br>d for use (a<br>ces withou<br>atement and<br>rt. 15). The<br>of this Law<br>onths from<br>are now can<br>rge and any | n is responsible to issue<br>l renewal of existing lid<br>d for transportation, to<br>s in the channels. (art. '<br>riculture when choosin<br>recaution is to be taken<br>s to abate water herbs (<br>rectly or mixed with w<br>rt. 12). The Implement<br>t exceeding the maxim<br>d will also fix expenses<br>Ministry of Irrigation<br>after consulting the<br>the publication of the<br>ncelled from Law no. 9<br>y regulation contradicti | e<br>cences<br>urist or<br>7)<br>g<br>h by the<br>(art.<br>rater for<br>ing<br>tum<br>s for<br>will<br>Law<br>03 of<br>ing the |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| Permissible         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
| Limits of           | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit                                                                                                                                                                                                                                                                                                     | Value                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
| Wastewater          | pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                        | 7-8.5                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
| Discharge           | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | °C                                                                                                                                                                                                                                                                                                       | 5 °C above a                                                                                                                                                                                                                                       | mbient                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                |  |
|                     | Colour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                        | Colorless                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
|                     | Dissolved oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/l                                                                                                                                                                                                                                                                                                     | >2                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
|                     | BOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/l                                                                                                                                                                                                                                                                                                     | <20                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
|                     | COD (permenganate mehtod)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/l                                                                                                                                                                                                                                                                                                     | <30                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
|                     | COD (dichromate mehtod)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/l                                                                                                                                                                                                                                                                                                     | <60                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
|                     | Suspended solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/l                                                                                                                                                                                                                                                                                                     | <20                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
|                     | Sulfides                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/l                                                                                                                                                                                                                                                                                                     | <0.5                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
|                     | Oil and grease                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/l                                                                                                                                                                                                                                                                                                     | <2                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
|                     | Nitrite                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/l                                                                                                                                                                                                                                                                                                     | Nil                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
|                     | Total heavy metals (as lead)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/l                                                                                                                                                                                                                                                                                                     | <1.5                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
|                     | Microscopic analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                        | Free                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
|                     | E. Coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                        | <100/100C.0                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                |  |
|                     | Pesticides                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/l                                                                                                                                                                                                                                                                                                     | free                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
|                     | <ul> <li>Wastewater treatment regulations</li> <li>Minimum requirement for wastewater treatment is the primary treatment including sedimentation.</li> <li>Although, some wastewater treatment plants are using sophisticated treatment systems including primary, secondary and tertiary treatment units (e.g., disinfection, by chlorine, unit).</li> </ul>                                                                                                                         |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
| Permissible         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |
| Limits for          | Classes of water Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n, total dissolved sol                                                                                                                                                                                                                                                                                   | lids                                                                                                                                                                                                                                               | Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                |  |
| Irrigation<br>Water |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |

|                     | 1. Class                       | 250                                                                      |         | 175                                      |             | 20                                      | 4                                                            |                          | 4                   |
|---------------------|--------------------------------|--------------------------------------------------------------------------|---------|------------------------------------------|-------------|-----------------------------------------|--------------------------------------------------------------|--------------------------|---------------------|
|                     | Excellent                      |                                                                          |         |                                          |             |                                         |                                                              |                          |                     |
|                     | 2. Class Good                  | 250-73                                                                   | 50      | 175-525                                  |             | 20-40                                   | 4-7                                                          |                          | 4-7                 |
|                     | 3. Class<br>Permissible        | 750-20                                                                   | 000     | 525-140                                  | 0           | 40-60                                   | 7-12                                                         | 7-12                     |                     |
|                     | 4. Class<br>Doubtful           | 2000-3                                                                   | 3000    | 1400-21                                  | 00          | 60-80                                   | 12-20                                                        |                          | 12-20               |
|                     | 5. Class<br>Unsuitable         | 3000                                                                     |         | 2100                                     |             | 80                                      | 20                                                           |                          | 20                  |
|                     |                                |                                                                          |         |                                          |             |                                         |                                                              |                          |                     |
| Wastewater          |                                |                                                                          |         |                                          | _           |                                         | _                                                            |                          |                     |
| Reuse<br>Regulation | Parameter Unit                 |                                                                          |         | it 1st group<br>Primary treated<br>water |             | 2nd group<br>Secondary<br>treated water | 2nd group3rd groupSecondaryAdvanced treatetreated waterwater |                          |                     |
|                     | BOD5                           |                                                                          | mg/l    |                                          | 300         |                                         | 40                                                           | 20                       |                     |
|                     | COD (dichromat                 | te)                                                                      | mg/l    |                                          | 600         |                                         | 80                                                           | 40                       |                     |
|                     | TSS                            |                                                                          | mg/l    |                                          | 350         |                                         | 40                                                           | 20                       |                     |
|                     | Oil and grease                 |                                                                          | mg/l    |                                          | Not l       | imited                                  | 10                                                           | 5                        |                     |
|                     | Number of cells<br>of Nimatoda | or eggs                                                                  | Cour    | nt/l                                     | 5           |                                         | 1                                                            | 1                        |                     |
|                     | E.Coli count                   |                                                                          | 100/r   | ml                                       | Not l       | imited                                  | 1000                                                         | 100                      |                     |
|                     | TDS                            |                                                                          | mg/l    |                                          | 2500        |                                         | 2000                                                         | 2000                     |                     |
|                     | Na absorption ra               | tio                                                                      | %       |                                          | 25          |                                         | 20                                                           | 0 20                     |                     |
|                     | Cl-                            |                                                                          | mg/l    |                                          | 350         |                                         | 300                                                          | 300                      |                     |
|                     | В                              |                                                                          | mg/l    |                                          | 5           |                                         | 3                                                            | 3 3                      |                     |
|                     | L                              |                                                                          |         |                                          | 1           |                                         |                                                              |                          |                     |
|                     | Parameter                      | Unit                                                                     |         | 1st group<br>Primary                     | treated v   | vater                                   | 2nd group<br>Secondary<br>treated water                      | 3rd gr<br>Advar<br>water | oup<br>need treated |
|                     | Cd                             | ppm                                                                      |         | 0.05                                     |             |                                         | 0.01                                                         | 0.01                     |                     |
|                     | Pb                             | ppm                                                                      |         | 10                                       |             | 5                                       | 5                                                            |                          |                     |
|                     | Cu                             | ppm                                                                      |         | Not limited<br>0.5                       |             | 0.2                                     | 0.2 0.2                                                      |                          |                     |
|                     | Ni                             | ppm                                                                      |         |                                          |             | 0.2                                     | 0.2                                                          |                          |                     |
|                     | Zn                             | ppm                                                                      |         | Not limit                                | Not limited |                                         | 2 2                                                          |                          |                     |
|                     | Sn                             | ppm                                                                      |         | Not limit                                | ed          |                                         | Not limited                                                  | nited 0.1<br>nited 0.1   |                     |
|                     | Cr                             | ppm                                                                      |         | Not limit                                | ted         |                                         | Not limited                                                  |                          |                     |
|                     | Мо                             | ppm                                                                      |         | Not limit                                | ted         |                                         | 0.01                                                         | 0.01                     |                     |
|                     | Mn                             | ppm                                                                      |         | 0.2                                      |             |                                         | 0.2                                                          | 0.2                      |                     |
|                     | Fe                             | ppm                                                                      |         | Not limit                                | ted         |                                         | 5                                                            | 5                        |                     |
|                     | Со                             | ppm                                                                      |         | Not limit                                | ted         |                                         | 0.05                                                         | 0.05                     |                     |
|                     |                                | · ·                                                                      |         | -<br>                                    |             |                                         |                                                              |                          |                     |
|                     |                                |                                                                          |         | Jord                                     | lan         |                                         |                                                              |                          |                     |
| Institutional       | Wastewater                     | collec                                                                   | tion, 1 | transpo                                  | rtatio      | n, treatm                               | ent, disposal                                                | and re                   | use receive         |
| Framework           | the greatest                   | concer                                                                   | n by    | the hea                                  | lth au      | thorities                               | in the Minist                                                | try of I                 | Health              |
|                     | (MOH). The                     | e MOH                                                                    | I reali | izes tha                                 | t prot      | ection ar                               | nd promotion                                                 | of hu                    | man health of       |
|                     | the public ca                  | ın't be                                                                  | guara   | anteed a                                 | and sa      | feguarde                                | ed without m                                                 | onitori                  | ng                  |
|                     | wastewater a                   | and co                                                                   | ntroll  | ing its u                                | use. T      | herefore                                | e, all possible                                              | and ap                   | pplicable           |
|                     | measures are                   | e entor                                                                  | ced t   | o preve                                  | nt any      | y illegal                               | use of waster                                                | vater c                  | or any use of       |
|                     | treated efflu                  | ents in                                                                  | a ma    | $\frac{1}{2002}$                         | at ma       | y endang                                | ger the public                                               | c nealth                 | n. The Public       |
|                     | Ministry un                    | INO. 34                                                                  | + 1TON  | 112002                                   | is the      | registati                               | the health of                                                | gn Whi<br>the new        | ion ine             |
|                     | agencies on                    | lorger                                                                   | s all   | actions                                  | Wete        | r Author                                | ne nealth OF                                                 | ule pe                   | Junier of           |
|                     | agenetes all                   | gencies and organization, like Water Authority of Jordan and Ministry of |         |                                          |             |                                         |                                                              |                          |                     |

|              | Environment, participate in the monit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | toring programs at varying levels.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ite following                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | Ministry of Health (MOH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | <ul> <li>The Ministry of Health has the most a program among other agencies. This</li> <li>1- periodic and regular health inspective sure that no adverse health effective of the owner of the plant, public</li> <li>2- Medical health examination of the regular basis to discover any symple people. Treatment of sick people</li> <li>3- Health education of the workers farmers and the public.</li> <li>4- Sampling and testing of both raw emphasis on the latter.</li> <li>The results of testing are compared for standard No. 893/2002 for the use of the standard No. 893/2002</li></ul> | intensive and comprehensive monitoring<br>program consists of:<br>ction of the treatment plants to make<br>is are resulting from any plant regardless<br>or private sectors.<br>ne workers in the plants is conducted on<br>nptoms or ill effects of the exposed<br>is administered if deemed necessary.<br>in the treatment plants as well as to the<br>v sewage and treated effluents, with<br>or compliance with the Jordanian<br>treated wastewater in irrigation. |
|              | Water Authority of Jordan (WAJ)<br>(WAJ) owns and operates 19 treatme<br>which is run by the water authority, c<br>their program is to ensure that the pla<br>treated waters meet the requirements<br>different uses. The components of the<br>with respect to laboratory analysis on<br>Recently (WAJ) has established the V<br>permitting, monitoring and standard s<br>municipal and industrial reuse progra<br>water reuse projects and in the Enviro<br>environment issues and water resour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nt plants. The monitoring program,<br>overs these plants only. The goal of<br>ints are functioning well and that the<br>set in the Jordanian standard for<br>eir program are similar to those of MOH<br>ly.<br>Water Reuse & Environment Unit as the<br>setting Authority in Jordan for both<br>im, the unit also plays strong role in the<br>onmental Impact Assessment and in the<br>ces protection .                                                                |
|              | Ministry of Environment (MOE)<br>The monitoring program is run by the<br>order of MOE. The reports are receiv<br>concerned agencies for necessary act<br>small number of samples, which are to<br>assessment of the quality of wastewa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e Royal Scientific Society (RSS) for the<br>ed by MOE and disseminated to<br>ion. The scope of the program and the<br>rested, do not allow for proper<br>ter. In addition, no crops are monitored.                                                                                                                                                                                                                                                                     |
| Main Policy  | Ministry of Water and Irrigation, Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nistry of Agriculture, Ministry of                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Issues       | Environment, Ministry of Health are legislative framework for wastewater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an responsible for policies and<br>reuse. These policies comply with most                                                                                                                                                                                                                                                                                                                                                                                              |
|              | recent standards for wastewater reuse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e issued in 2002 under the number :                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | This Jordanian standard is purposely<br>reclaimed domestic wastewater disch<br>should meet in order to be discharged<br>in this standard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | set to specify the conditions that the<br>arged from wastewater treatment plants<br>I or used in the various fields mentioned                                                                                                                                                                                                                                                                                                                                          |
| Discharge of | Parameters Abbreviation Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Allowable Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1            | incort match office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Water to     | Group A                                                                 |                                         |                                                                    |                                                                                      |
|--------------|-------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|              | Biological Oxygen                                                       | BOD <sub>5</sub>                        | mg/l                                                               | 60*                                                                                  |
| Streams or   | Demand                                                                  |                                         |                                                                    |                                                                                      |
| Water Bodies | Chemical Oxygen Demand                                                  | COD                                     | mg/l                                                               | 150**                                                                                |
|              | Dissolved Oxygen                                                        | DO                                      | mg/l                                                               | >]                                                                                   |
|              | l otal suspended solids                                                 | 155                                     | mg/l                                                               | 60**                                                                                 |
|              | рп<br>Nitrata                                                           | рп                                      | mg/l                                                               | 0-9                                                                                  |
|              | Total Nitrogen                                                          | T N                                     | mg/l                                                               | 45                                                                                   |
|              | Fscherishia Coli                                                        | E coli                                  | Most probable number or                                            | 1000                                                                                 |
|              | Escherishiu Cou                                                         | L. con                                  | colony forming unit/100 ml                                         | 1000                                                                                 |
|              | Intestinal Helminthes Eggs                                              | Intestinal                              | egg/l                                                              | < or =1                                                                              |
|              |                                                                         | Helminthes                              | - 66                                                               | -                                                                                    |
|              |                                                                         | Eggs                                    |                                                                    |                                                                                      |
|              | Fat and grease                                                          | FOG                                     | mg/l                                                               | 8.0                                                                                  |
|              | Group B                                                                 |                                         |                                                                    |                                                                                      |
|              | Phenol                                                                  | Phenol                                  | mg/l                                                               | <0.002                                                                               |
|              | Detergent                                                               | MBAS                                    | mg/l                                                               | 25                                                                                   |
|              | Total Dissolved Solids                                                  | TDS                                     | mg/l                                                               | 1500                                                                                 |
|              | Total Phosphate                                                         | T-PO <sub>4</sub>                       | mg/l                                                               | 15                                                                                   |
|              | Chloride                                                                | Cl                                      | mg/l                                                               | 350                                                                                  |
|              | Sulfate                                                                 | $SO_4$                                  | mg/l                                                               | 300                                                                                  |
|              | Bicarbonate                                                             | HCO <sub>3</sub>                        | mg/l                                                               | 400                                                                                  |
|              | Sodium                                                                  | Na                                      | mg/l                                                               | 200                                                                                  |
|              | Magnesium                                                               | Mg                                      | mg/l                                                               | 60                                                                                   |
|              | Calcium                                                                 | Ca                                      | mg/l                                                               | 200                                                                                  |
|              | Sodium Adsorption Ration                                                | SAR                                     | -                                                                  | 6.0                                                                                  |
|              | Aluminium                                                               | Al                                      | mg/l                                                               | 2.0                                                                                  |
|              | Arsenic                                                                 | As                                      | mg/l                                                               | 0.05                                                                                 |
|              | Berelium                                                                | Be                                      | mg/l                                                               | 0.1                                                                                  |
|              | Copper                                                                  | Cu                                      | mg/l                                                               | 0.2                                                                                  |
|              | Floride                                                                 | F                                       | mg/l                                                               | 1.5                                                                                  |
|              | Iron                                                                    | Fe                                      | mg/l                                                               | 5.0                                                                                  |
|              | Lithium                                                                 | Li                                      | mg/l                                                               | 2.5                                                                                  |
|              | Manganese                                                               | Mn                                      | mg/l                                                               | 0.2                                                                                  |
|              | Molibdinum                                                              | Мо                                      | mg/l                                                               | 0.01                                                                                 |
|              | Nikel                                                                   | Ni                                      | mg/l                                                               | 0.2                                                                                  |
|              | Lead                                                                    | Pb                                      | mg/l                                                               | 0.2                                                                                  |
|              | Selenium                                                                | Se                                      | mg/l                                                               | 0.05                                                                                 |
|              | Cadmium                                                                 | Cd                                      | mg/l                                                               | 0.01                                                                                 |
|              | Zinc                                                                    | Zn                                      | mg/l                                                               | 5.0                                                                                  |
|              | Chrome                                                                  | Cr                                      | mg/l                                                               | 0.02                                                                                 |
|              | Mercury                                                                 | Hg                                      | mg/l                                                               | 0.002                                                                                |
|              | Vanadium                                                                | V                                       | mg/l                                                               | 0.1                                                                                  |
|              | Cobalt                                                                  | Со                                      | mg/l                                                               | 0.05                                                                                 |
|              | Boron                                                                   | В                                       | mg/l                                                               | 1.0                                                                                  |
|              | Cyanide                                                                 | CN                                      | mg/l                                                               | 0.01                                                                                 |
|              |                                                                         |                                         |                                                                    |                                                                                      |
|              | * For biological Treatment Pla<br>** For biological Treatment<br>number | nts or Treatment J<br>Plants or Treatme | plants with polishing ponds BOD<br>ent plants with polishing ponds | <sup>5</sup> is considered as the filtered BOD<br>the allowable limits is twice this |
|              |                                                                         |                                         |                                                                    |                                                                                      |
| Criteria for |                                                                         |                                         |                                                                    | 1 A.B. 11                                                                            |
| Use in       | Parameters                                                              | Abbreviation                            | Unit                                                               | Allowable Limit                                                                      |
| Artificial   | Group A<br>Biological Oxygen<br>Demand                                  | BOD <sub>5</sub>                        | mg/l                                                               | 15                                                                                   |
| Groundwater  | Chemical Oxygen Demand                                                  | COD                                     | mg/l                                                               | 50                                                                                   |
| Aquifora     | Dissolved Oxygen                                                        | DO                                      | mg/l                                                               | >2                                                                                   |
| Aquiters     | Total suspended solids                                                  | TSS                                     | mg/l                                                               | 50                                                                                   |
|              | nH                                                                      | nH                                      | mg/l                                                               | 50                                                                                   |
|              | Turbidity                                                               | pm                                      | NTU                                                                | 0-9                                                                                  |
|              | Nitrate                                                                 | NO.                                     | mg/l                                                               | 30                                                                                   |
|              | Ammonia                                                                 | NH.                                     | 111 <u>5</u> / 1                                                   | 50                                                                                   |
|              | Total Nitrogen                                                          | T-N                                     | mg/l                                                               | 45                                                                                   |
|              | Escharishia Coli                                                        | F coli                                  | Most probable number or                                            | <22                                                                                  |
|              | Escherisnia Coli                                                        | L. COII                                 | colony forming unit/100ml                                          | ~2.2                                                                                 |
|              | Intestinal Helminthes Eggs                                              | Intestinal<br>Helminthes                | Egg/l                                                              | < or =1                                                                              |
|              | Fat and success                                                         | Eggs                                    |                                                                    | 8.0                                                                                  |
|              | Group P                                                                 | 100                                     | mg/i                                                               | 0.0                                                                                  |
|              | Dhonol                                                                  | Dharal                                  |                                                                    | <0.002                                                                               |
|              | Detergart                                                               | MDAS                                    | mg/1 mg/1                                                          | <u>\0.002</u>                                                                        |
| 1            | Detergent                                                               | MDAS                                    | 111g/1                                                             | 23                                                                                   |

|                | Total Dissolved Solids   | TDS                   | mg/l         |               | 1500                    |   |
|----------------|--------------------------|-----------------------|--------------|---------------|-------------------------|---|
|                | Total Phosphate          | T-PO4                 | mg/l         |               | 15                      |   |
|                | Chloride                 | C1                    | mg/l         |               | 350                     |   |
|                | Sulfata                  | SO                    | mg/l         |               | 300                     |   |
|                | Bicarbonate              | HCO                   | mg/l         |               | 400                     |   |
|                | Sodium                   | No.                   | mg/l         |               | 200                     |   |
|                | Magnagium                | INd<br>Ma             | mg/1         |               | 200                     |   |
|                | Magnesium<br>Calairea    | Nig<br>C-             | mg/1         |               | 200                     |   |
|                | Calcium                  | Ca                    | mg/l         |               | 200                     |   |
|                | Sodium Adsorption Ration | SAR                   | mg/l         |               | 6.0                     |   |
|                | Aluminium                | Al                    | -            |               | 2.0                     |   |
|                | Arsenic                  | As                    | mg/l         |               | 0.05                    |   |
|                | Berelium                 | Be                    | mg/l         |               | 0.1                     |   |
|                | Copper                   | Cu                    | mg/l         |               | 0.2                     |   |
|                | Floride                  | F                     | mg/l         |               | 1.5                     |   |
|                | Iron                     | Fe                    | mg/l         |               | 5.0                     |   |
|                | Lithium                  | Li                    | mg/l         |               | 2.5                     |   |
|                | Manganese                | Mn                    | mg/l         |               | 0.2                     |   |
|                | Molibdinum               | Mo                    | mg/l         |               | 0.01                    |   |
|                | Nikel                    | Ni                    | mg/l         |               | 0.2                     |   |
|                | Lead                     | Pb                    | mg/l         |               | 0.2                     |   |
|                | Selenium                 | Se                    | mg/l         |               | 0.05                    |   |
|                | Cadmium                  | Cd                    | mg/l         |               | 0.01                    |   |
|                | Zinc                     | Zn                    | mg/l         |               | 5.0                     |   |
|                | Chrome                   | Cr                    | mg/l         |               | 0.02                    |   |
|                | Mercury                  | Hg                    | mg/l         |               | 0.1                     |   |
|                | Vanadium                 | V                     | mg/l         |               | 0.1                     |   |
|                | Cobalt                   | Со                    | mg/l         |               | 0.05                    |   |
|                | Boron                    | В                     | mg/l         |               | 1.0                     |   |
|                | Cyanide                  | CN                    | mg/l         |               | 0.01                    |   |
|                |                          |                       |              |               |                         |   |
| Criteria for   |                          | 1                     | 1            |               | 1                       | - |
| Dausa in       | Parameter                | Unit                  | Cooked       | Fruit Trees,  | Field Crops, Industrial |   |
| Keuse III      |                          |                       | Vegetables,  | Sides of      | Crops and Forest Trees  |   |
| Irrigation     |                          |                       | Parks,       | Roads         |                         |   |
| C              |                          |                       | Playgrounds  | outside city  |                         |   |
|                |                          |                       | and Sides of | f limits, and |                         |   |
|                |                          |                       | Roads within | n landscape   |                         |   |
|                |                          |                       | city limits  | D             | 0                       | - |
|                | Distance 1 Orean         | /1                    | A            | B 200         | 0                       | - |
|                | Biological Oxygen        | mg/l                  | 30           | 200           | 300                     |   |
|                | Chamical Owngan          |                       | 100          | 500           | 500                     | - |
|                | Demand                   | Ing/1                 | 100          | 300           | 300                     |   |
|                | Dissolved Oxygen         | mg/l                  | >2           |               |                         | - |
|                | Total suspended solids   | mg/l                  | 50           | -             | -                       | { |
|                | pH                       | ling/1                | 50           | 6.0           | 6.0                     | { |
|                | pri<br>Turbidity         | UIIII<br>NTU          | 10           | 0-9           | 0-9                     | 4 |
|                | Nitrate                  | mg/l                  | 20           | - 15          | - 45                    | { |
|                | Total Nitrogen           | mg/1                  | 30           | 43            | 45                      | { |
|                | Total Milogen            | iiig/1                | 45           | 70            | 70                      |   |
|                |                          |                       | 100          | 1000          |                         | - |
|                | Escherishia Coli         | MOSt                  | 100          | 1000          | -                       |   |
|                |                          | probable<br>number or |              |               |                         |   |
|                |                          | colony                |              |               |                         |   |
|                |                          | forming               |              |               |                         |   |
|                |                          | unit/100 ml           |              |               |                         |   |
|                | Intestinal Helminthes    | Egg/l                 | < or = 1     | < or = 1      | < or = 1                | 1 |
|                | Eggs                     | <u> </u>              |              |               |                         |   |
| Guidelines for |                          |                       |              |               |                         |   |
| Dauga in       | Fat And grease           | FOG                   |              | mg/l          | 8                       |   |
| Keuse in       | Phenol                   | Phenol                |              | mg/l          | < 0.002                 | ] |
| Irrigation     | Detergent                | MBAS                  |              | mg/l          | 100                     | 1 |
|                | Total Dissolved Solids   | TDS                   |              | mg/l          | 1500                    | 1 |
|                | Total Phosphate          | T-PO <sub>4</sub>     |              | mg/l          | 30                      | 1 |
|                | Chloride                 | Cl                    |              | mg/l          | 400                     | - |
|                | Sulfata                  | 50                    |              | mg/l          | 500                     | - |
|                | Diageherate              |                       |              | ing/1         | 300                     | - |
|                | Sodium                   | No.                   |              | mg/l          | 400                     | - |
|                | Sourium                  | INa<br>Ma             |              | mg/l          | 230                     | - |
|                | Calaium                  |                       |              | mg/l          | 220                     | - |
|                | Calcium                  |                       |              | 111g/1        | 230                     | - |
|                | Sourum Adsorption Ratio  | II SAK                |              | -             | У<br>-                  | - |
|                | Aluminium                | Al                    |              | mg/l          | 5                       | - |
|                | Arsenic                  | As                    |              | mg/I          | 0.1                     | 1 |

|               | Berelium                                                                                                                                         | Be                                | mg/l            | 0.1                           |       |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|-------------------------------|-------|--|--|
|               | Copper                                                                                                                                           | Cu                                | mg/l            | 0.2                           |       |  |  |
|               | Floride                                                                                                                                          | F                                 | mg/l            | 1.5                           |       |  |  |
|               | Iron                                                                                                                                             | Fe                                | mg/l            | 5.0                           |       |  |  |
|               | Lithium                                                                                                                                          | Li                                | mg/l            | 2.5 (0.075 for citrus         |       |  |  |
|               |                                                                                                                                                  |                                   | C               | crops)                        |       |  |  |
|               | Manganese                                                                                                                                        | Mn                                | mg/l            | 0.2                           |       |  |  |
|               | Molibdinum                                                                                                                                       | Мо                                | mg/l            | 0.01                          |       |  |  |
|               | Nikel                                                                                                                                            | Ni                                | mg/l            | 0.2                           |       |  |  |
|               | Lead                                                                                                                                             | Pb                                | mg/l            | 5.0                           |       |  |  |
|               | Selenium                                                                                                                                         | Se                                | mg/l            | 0.05                          |       |  |  |
|               | Cadmium                                                                                                                                          | Cd                                | mg/l            | 0.01                          |       |  |  |
|               | Zinc                                                                                                                                             | Zn                                | mg/l            | 5.0                           |       |  |  |
|               | Chrome                                                                                                                                           | Cr                                | mg/l            | 0.1                           |       |  |  |
|               | Mercury                                                                                                                                          | Нg                                | mg/l            | 0.002                         |       |  |  |
|               | Vanadium                                                                                                                                         | V                                 | mg/l            | 0.1                           |       |  |  |
|               | Cobalt                                                                                                                                           | Со                                | mg/l            | 0.05                          |       |  |  |
|               | Boron                                                                                                                                            | В                                 | mg/l            | 1.0                           |       |  |  |
|               | Cyanide                                                                                                                                          | CN                                | mg/l            | 0.01                          |       |  |  |
|               |                                                                                                                                                  |                                   |                 |                               |       |  |  |
|               |                                                                                                                                                  | Morocco                           |                 |                               |       |  |  |
| Curront       | Most Morocoon town                                                                                                                               | a are equipped with               | h gowaraga n    | stwarka fraguantly            | ,     |  |  |
| Current       | Wost Woroccan town                                                                                                                               | is are equipped with              | n sewerage no   | etworks, frequently           |       |  |  |
| Situation     | collecting also indust                                                                                                                           | rial effluent. The v              | olumes of wa    | stewater collected            | were  |  |  |
|               | estimated at 380 Mm                                                                                                                              | $^{3}/\mathrm{vr}$ in 1988 and an | e expected to   | reach 700 Mm <sup>3</sup> in  |       |  |  |
|               |                                                                                                                                                  | /yr in 1988 and ar                |                 |                               |       |  |  |
|               | 2020. For Casablanca                                                                                                                             | a alone, the annual               | production of   | t wastewater was              |       |  |  |
|               | estimated at 250 Mm                                                                                                                              | $^3$ in 1991, with fore           | ecasts of arou  | nd 350 Mm <sup>3</sup> in 201 | 0.    |  |  |
|               | However out of the                                                                                                                               | 60 largest towns on               | ly 7 hove o M   | WTD but both the              | ir.   |  |  |
|               | However, out of the o                                                                                                                            | bo largest towns on               | ly / nave a lv  | IWIP, but both the            |       |  |  |
|               | design and operation                                                                                                                             | are considered insu               | ufficient. As a | a consequence, mos            | st of |  |  |
|               | the wastewater produ                                                                                                                             | iced by the inland t              | owns is used    | to irrigate about 7           | 235   |  |  |
|               |                                                                                                                                                  |                                   |                 |                               | 255   |  |  |
|               | ha of crops after insu                                                                                                                           | fficient or even no               | treatment. A    | high proportion of            | the   |  |  |
|               | remaining water is di                                                                                                                            | scharged to the sea               | (Conseil Sur    | perieur de l'Eau 19           | 988   |  |  |
|               | and 1004) The year                                                                                                                               |                                   | vailable for m  |                               |       |  |  |
|               | and 1994). The volur                                                                                                                             | ne of wastewater av               | vallable for re | euse will increase v          | /ith  |  |  |
|               | the improvement of sewerage networks. Under these conditions the share of                                                                        |                                   |                 |                               |       |  |  |
|               | wastewater in the overall water resource could be soveral percentage points                                                                      |                                   |                 |                               |       |  |  |
|               | wastewater in the overall water resource could be several percentage points                                                                      |                                   |                 |                               |       |  |  |
|               | higher within a few decades, especially if the wastewater of coastal towns is                                                                    |                                   |                 |                               |       |  |  |
|               | also reavaled                                                                                                                                    |                                   |                 |                               |       |  |  |
|               |                                                                                                                                                  |                                   |                 |                               |       |  |  |
|               | The reused water is n                                                                                                                            | nainly raw wastewa                | ater sometime   | es mixed with fresh           |       |  |  |
|               | water The irrigated o                                                                                                                            | crops are mainly for              | dder crops (4   | harvests of corn pe           | r     |  |  |
|               |                                                                                                                                                  |                                   |                 |                               | 11.   |  |  |
|               | year around Marrakech), fruit trees, cereals and produce (growing and selling                                                                    |                                   |                 |                               |       |  |  |
|               | vegetables to be eater                                                                                                                           | n raw is prohibited               | ). Morocco do   | bes not have vet an           | V     |  |  |
|               | spacific westewater r                                                                                                                            | ausa regulations <b>D</b>         | afaranaa ia u   | sually made to the            | ,     |  |  |
|               | specific wastewater I                                                                                                                            | euse legulations. K               | elefence is us  | sually made to the            |       |  |  |
|               | WHO recommendations. While reducing its environmental impact on the conventional receiving waters, the lack of wastewater treatment before reuse |                                   |                 |                               |       |  |  |
|               |                                                                                                                                                  |                                   |                 |                               |       |  |  |
|               |                                                                                                                                                  |                                   | ·               |                               | cuse  |  |  |
|               | in inland cities result                                                                                                                          | s in adverse health               | impacts. Imp    | rovement in waster            | vater |  |  |
|               | reuse methods and in                                                                                                                             | the quality of reus               | ed water for i  | rrigation is recogni          | zed   |  |  |
|               |                                                                                                                                                  | the quality of feas               | ·               |                               | 200   |  |  |
|               | as essential. In karstie                                                                                                                         | c areas, the inflitrat            | ion of wastev   | vater affects                 |       |  |  |
|               | groundwater resource                                                                                                                             | es to varying degree              | es. Lastly, the | e inadequate sanitat          | ion.  |  |  |
|               | collection and treatm                                                                                                                            | ant of wastewater                 | mostly in sm    | all towns are often           | a ,   |  |  |
|               | concerton and treatm                                                                                                                             | chi of wastewater,                |                 | all towns, are often          | a     |  |  |
|               | risk to the eutrophica                                                                                                                           | tion of dams. The c               | discharge of r  | aw wastewater to t            | he    |  |  |
|               | sea without proper of                                                                                                                            | itfalls may affect th             | ne develonme    | nt of tourism by              |       |  |  |
|               | sea without proper of                                                                                                                            |                                   |                 |                               |       |  |  |
|               | degrading the sanitar                                                                                                                            | y quality of beache               | s and generat   | ing unpleasant odo            | urs   |  |  |
|               | and aesthetics                                                                                                                                   |                                   |                 |                               |       |  |  |
|               |                                                                                                                                                  |                                   |                 |                               |       |  |  |
|               |                                                                                                                                                  |                                   |                 |                               |       |  |  |
| Institutional | At institutional level.                                                                                                                          | water managemen                   | t is a shared r | esponsibility betwe           | een   |  |  |
| Framework     | the Ministry of Equir                                                                                                                            | ment (for resource                | e mobilizatio   | n management en               | 1     |  |  |
| Tamework      | the ministry of Equip                                                                                                                            |                                   | s mounizatio    |                               | 1     |  |  |
|               | planning), the Minist                                                                                                                            | ry of Agriculture (v              | which is the p  | rincipal consumer             | and   |  |  |
|               | manager of the wetla                                                                                                                             | nds) and the Depar                | tment of the l  | Environment (which            | h is  |  |  |
|               | manager of the would                                                                                                                             | may and the Depar                 | unent of the l  |                               |       |  |  |

| res  | ponsible for the development of laws and standards with regards to            |
|------|-------------------------------------------------------------------------------|
| dis  | charges). The institutional framework consists of the following bodies:       |
|      |                                                                               |
| Ad   | lvisory authorities                                                           |
| _    | Higher Council of Water and Climate                                           |
| _    | National Council of the Environment                                           |
| _    | Prefectorial and Provincial Commissions of water                              |
|      |                                                                               |
| Ad   | ministrative authorities                                                      |
| _    | Ministry of Health                                                            |
| _    | Ministry of Equipment                                                         |
|      | National Office of Drinking Water                                             |
|      | Basin Agencies                                                                |
|      | Directorate of Meteorology                                                    |
|      | Directorate General of Hydraulics                                             |
| _    | Ministry of Interior                                                          |
|      | Directorate General of Local Communities                                      |
|      | Directorate of Control and Conceded Services                                  |
|      | Water Services                                                                |
| _    | Ministry of Agriculture and Rural Development                                 |
|      | Administration of Rural Engineering                                           |
|      | Directorate of Waters and Forests                                             |
|      | Regional Offices of Agricultural Development                                  |
| _    | Ministry of Energy and Mines                                                  |
|      | National Office of Electricity                                                |
| _    | Secretariat of State of the Environment                                       |
| _    | Ministry of regional planning, the water and the environment                  |
| ть   | a Ministry of the Environment (ME)                                            |
| Th   | is institution is responsible for the protection of the environment in        |
| σer  | heral and particularly the protection of the natural resources. This Ministry |
| nrc  | wides technical assistance in aid of the local communities for which water    |
| tre  | atment is a principal component                                               |
| Th   | e Local Communities (CL)                                                      |
| Th   | e Communal Charter of September 30, 1976 assigns to Local                     |
| Co   | mmunities the management of public services including liquid treatment.       |
| Mi   | inistry of the Interior                                                       |
| Wł   | nile administratively supervising the local communities, this department      |
| pla  | vs an important role regarding wastewater management through the              |
| Ge   | neral Directorate of the Local Communities (DGCL) and the General             |
| Di   | rectorate of Urbanism. Architecture and Regional Planning (DGUAAT).           |
| Mi   | nistry of Public Health                                                       |
| It c | contributes to the protection of public health by preserving the hygiene of   |
| the  | habitat and the public health.                                                |
| Mi   | nistry of Agriculture and Rural Development                                   |
| Wi   | th a long experience in the protection of the rural environment.              |
| par  | ticularly before the decentralisation policy is in charge of wastewater       |
| trea | atment and agricultural reuses through the ORMVA.                             |
| Mi   | nistry of Equipment (ME)                                                      |
| Be   | ing in charge by the State to manage the hydraulic sector, this department    |
| dea  | als with questions of water treatment due to the research activities it       |

|                        | <ul> <li>performs in the field of water protection and management.</li> <li>Basin Agencies</li> <li>Decentralized organs for water management, these agencies have obvious interactions with regards wastewater management.</li> <li>National Office of Drinking Water (ONEP)</li> <li>Responsible for drinking water conveyance, distribution management within the communities and monitoring of wastewater that is likely to be used for human consumption. At this moment, ONEP is also in charge of the cleanin up of certain rural centers.</li> <li>Other administrative authorities</li> <li>National Council of the Environment (CNE): Created in 1980, is an independent consultative authority in matters of environmental protection. It was re-energized by the creation of the Ministry of the Environment. It currently has departments at regional and local level</li> <li>The Higher Council of Water Climate (CSEC): Created in 1981 by royal decision, it was institutionalised recently by a Decree and reassembles all authorities concerned with water management and the climate.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                     |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Policies               | In 1995, La<br>of the nation<br>of legal inst<br>water resour<br>the degradar<br>The major p<br>state-owned<br>to accompli<br>water manag<br>This dialogu<br>namely the<br>Agencies (A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | w No10/95 ca<br>nal water polic<br>ruments aimir<br>rces, the incre-<br>tion of the env<br>principles of the<br>property; (b)<br>sh solidarity a<br>gement after m<br>ue was materia<br>Higher Counc<br>AdB) and the F                                                                                                                                                 | me into for<br>cy for the r<br>ag at dealin<br>asing wate<br>vironment a<br>nis law are<br>water has<br>t all levels<br>national dia<br>alized by th<br>il of Water<br>Prefectorial | rce and estable<br>next decades.<br>In g with the pro-<br>r demand, the<br>and the water<br>in brief the for<br>an economic<br>(national, regulogue.<br>the creation of<br>and Climate<br>and Provinci                                | ished the lega<br>This law inclu-<br>oblems of the<br>rise of the ware<br>recipients.<br>ollowing: (a) ware<br>value and (c)<br>gional and loca<br>three organiz<br>(CSEC), the lat<br>al Commission                         | I framework<br>ides a series<br>deficiency of<br>ater price and<br>vater is a<br>the necessity<br>al) regarding<br>ations,<br>Basin<br>ons of Water.                                                                                                                                                                                                                                                                                                            |
| Wastewater<br>Criteria | CATEGORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CONDITION<br>FOR<br>REALISATION<br>Irrigation of<br>cultures to be<br>consumed raw,<br>sport fields,<br>parks <sup>iii[+]</sup> .                                                                                                                                                                                                                                      | EXPOSED<br>GROUPS<br>Farmers<br>Public<br>Consumers                                                                                                                                 | INTESTINAL<br>NEMATODES<br><sup>i[*]</sup> [arithmetic<br>mean (average)<br>of the number<br>of eggs per<br>liter]<br>Absence                                                                                                         | FECAL<br>COLIFORMES<br>[geometric<br>mean of the<br>number per 100<br>ml] <sup>ii[+]</sup><br>≤ 1000 (d)                                                                                                                     | TREATMENT<br>PROCESS FOR<br>WASTEWATER<br>Capable of<br>ensuring the<br>required<br>microbiological<br>quality<br>A series of<br>stabilization tanks<br>designed to<br>obtain the desired<br>microbiological<br>quality or any<br>other equivalent<br>treatment.                                                                                                                                                                                                |
|                        | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Irrigation of<br>cereals,<br>industrial crops,<br>fodder crops,<br>pastures and tree<br>plantations <sup>iv[§]</sup> .                                                                                                                                                                                                                                                 | Farmers                                                                                                                                                                             | Absence<br>Without object                                                                                                                                                                                                             | No standards is<br>recommended<br>Without object                                                                                                                                                                             | Retention in the<br>stabilization basin<br>for 8-10 days or<br>any other process<br>which allows an<br>equivalent<br>elimination of the<br>helminths and the<br>fecal coliformes.<br>Preliminary                                                                                                                                                                                                                                                                |
| Wastewater<br>Criteria | state-owned<br>to accompli<br>water manag<br>This dialogu<br>namely the<br>Agencies (A<br>CATEGORY<br>A<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I property; (b)<br>sh solidarity a<br>gement after n<br>ue was materia<br>Higher Counc<br>AdB) and the F<br>CONDITION<br>FOR<br>REALISATION<br>Irrigation of<br>cultures to be<br>consumed raw,<br>sport fields,<br>parks <sup>in[+]</sup> .<br>Irrigation of<br>cereals,<br>industrial crops,<br>fodder crops,<br>pastures and tree<br>plantations <sup>iv[§]</sup> . | water has<br>t all levels<br>hational dia<br>alized by th<br>il of Water<br>Prefectorial<br>EXPOSED<br>GROUPS<br>Farmers<br>Public<br>Consumers<br>Farmers<br>None                  | an economic<br>(national, reg<br>llogue.<br>he creation of<br>and Climate<br>and Provinci<br>INTESTINAL<br>NEMATODES<br><sup>i[*]</sup> [arithmetic<br>mean (average)<br>of the number<br>of eggs per<br>liter]<br>Absence<br>Absence | value and (c)<br>gional and loca<br>three organiz<br>(CSEC), the l<br>al Commissio<br>FECAL<br>COLIFORMES<br>[geometric<br>mean of the<br>number per 100<br>ml] $i!(+)$<br>$\leq 1000$ (d)<br>No standards is<br>recommended | the necess<br>al) regardi<br>ations,<br>Basin<br>ons of Wat<br>TREATMEN<br>PROCESS<br>WASTEWA<br>Capable<br>ensuring<br>required<br>microbiologi<br>quality<br>A series<br>stabilization<br>designed<br>obtain the de<br>microbiologi<br>quality or<br>other equiv<br>treatment.<br>Retention ir<br>stabilization<br>for 8-10 day<br>any other pr<br>which allow<br>equivalent<br>elimination of<br>heliminths an<br>fecal coliforr<br>Preliminary<br>treatment |

|               | category B if the accordin<br>farmers and irrigation       |                                                                                                                                                                                |                                         |              |  |  |  |  |
|---------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|--|--|--|--|
|               | public techniqu                                            |                                                                                                                                                                                |                                         |              |  |  |  |  |
|               |                                                            | consumers are                                                                                                                                                                  | least                                   | primary      |  |  |  |  |
|               | i[*] • · · · ·                                             | not exposed to it                                                                                                                                                              | decanta                                 | tion         |  |  |  |  |
|               | <sup>1</sup> Ascaris, Tricnuris (wnipworm) and Ankylostoma |                                                                                                                                                                                |                                         |              |  |  |  |  |
|               | <sup>iii[+]</sup> A strict di                              | <sup>iii</sup> During the irrigation period <sup>iii</sup> <sup>(+)</sup> A strict directive (<200 feeal coliformes per 100ml) is justified for lawn with which the public can |                                         |              |  |  |  |  |
|               | direct contat                                              | centre (1200 recur contonnes per roomi) is just                                                                                                                                | ince for have when when the public      | cuir nuve u  |  |  |  |  |
|               | <sup>iv[§]</sup> In the case                               | of fruits trees, the irrigation must be stopped two w                                                                                                                          | eeks before harvest and no fruit that h | as fall down |  |  |  |  |
|               | must be collect                                            | ed. Irrigation by spraying is prohibited.                                                                                                                                      |                                         |              |  |  |  |  |
|               |                                                            |                                                                                                                                                                                |                                         |              |  |  |  |  |
| Quality       |                                                            | D (                                                                                                                                                                            |                                         | 7            |  |  |  |  |
| Standards for |                                                            | Parameters<br>PACTEDIOLOCIC DADAMETEDS                                                                                                                                         | Limit values                            | -            |  |  |  |  |
| rausa in      | 1                                                          | Fecal coliforms                                                                                                                                                                | 1000/100 ml*                            | -            |  |  |  |  |
|               | 2                                                          | Salmonella                                                                                                                                                                     | Absence in 51                           | 1            |  |  |  |  |
| Irrigation    | 3                                                          | Bacterium of cholera                                                                                                                                                           | Absence in 450 ml                       | 1            |  |  |  |  |
|               |                                                            | PARASITOLOGIC PARAMETERS                                                                                                                                                       |                                         |              |  |  |  |  |
|               | 4                                                          | Pathogenic parasites                                                                                                                                                           | Absence                                 | _            |  |  |  |  |
|               | 5                                                          | Eggs, Cysts of parasites                                                                                                                                                       | Absence                                 | _            |  |  |  |  |
|               | 0                                                          | Larvae of Ankylostomides                                                                                                                                                       | Absence                                 | -            |  |  |  |  |
|               |                                                            | TOXIC PARAMETERS <sup>(1)</sup>                                                                                                                                                | Austrice                                | -            |  |  |  |  |
|               | 8                                                          | Mercury (Hg) in mg/l                                                                                                                                                           | 0.001                                   | 4            |  |  |  |  |
|               | 9                                                          | Cadmium (Cd) in mg/l                                                                                                                                                           | 0,01                                    | 1            |  |  |  |  |
|               | 10                                                         | Arsenic (As) in mg/l                                                                                                                                                           | 0,1                                     | ]            |  |  |  |  |
|               | 11                                                         | Total Chrome (Cr) in mg/l                                                                                                                                                      | 0,1                                     | 4            |  |  |  |  |
|               | 12                                                         | Lead (Pb) in mg/b                                                                                                                                                              | 5                                       |              |  |  |  |  |
|               | 13                                                         | Copper (Cu) in mg/l                                                                                                                                                            | 0,2                                     | _            |  |  |  |  |
|               | 14                                                         | Zinc (Zn) in mg/l<br>Selenium (Se) in mg/l                                                                                                                                     | 2                                       | -            |  |  |  |  |
|               | 15                                                         | Fluorine (F) in mg/l                                                                                                                                                           | 1                                       | -            |  |  |  |  |
|               | 17                                                         | Cyanide (Cn) in mg/l                                                                                                                                                           | 1                                       | 1            |  |  |  |  |
|               | 18                                                         | Phenols in mg/l                                                                                                                                                                | 3                                       | 1            |  |  |  |  |
|               | 19                                                         | Aluminum (Al) in mg/l                                                                                                                                                          | 5                                       |              |  |  |  |  |
|               | 20                                                         | Beryllium (Be) in mg/l                                                                                                                                                         | 0,1                                     |              |  |  |  |  |
|               | 21                                                         | Cobalt (Co) in mg/l                                                                                                                                                            | 0,05                                    | _            |  |  |  |  |
|               | 22                                                         | Iron (Fe) in mg/l                                                                                                                                                              | 5                                       | 4            |  |  |  |  |
|               | 23                                                         | Manganese (Mn) in mg/l                                                                                                                                                         | 0.2                                     | -            |  |  |  |  |
|               | 25                                                         | Molybdenum (Mo) in mg/l                                                                                                                                                        | 0.01                                    | 4            |  |  |  |  |
|               | 26                                                         | Nickel (Ni) in mg/l                                                                                                                                                            | 0,2                                     | 7            |  |  |  |  |
|               | 27                                                         | Vanadium (V) in mg/l                                                                                                                                                           | 0,1                                     |              |  |  |  |  |
|               | PH                                                         | YSICO-CHEMICAL PARAMETERS                                                                                                                                                      |                                         | _            |  |  |  |  |
|               | 28                                                         | Total salinity (STD) mg/l                                                                                                                                                      | 7680                                    | 4            |  |  |  |  |
|               | 20                                                         | Infiltration                                                                                                                                                                   | 12                                      | -            |  |  |  |  |
|               | 2)                                                         | Le SAR*** = $0 - 3$ et CE =                                                                                                                                                    | <0.2                                    |              |  |  |  |  |
|               |                                                            | 3 - 6 et CE =                                                                                                                                                                  | <0,3                                    |              |  |  |  |  |
|               |                                                            | 6 - 12 et CE =                                                                                                                                                                 | <0,5                                    |              |  |  |  |  |
|               |                                                            | 12 - 20 et CE =                                                                                                                                                                | <1,3                                    |              |  |  |  |  |
|               |                                                            | 20 - 40  et  CE =                                                                                                                                                              | <3                                      | 4            |  |  |  |  |
|               |                                                            | XIC IONS (affecting sensible cultures)                                                                                                                                         | [                                       | 4            |  |  |  |  |
|               | 30                                                         | Surface Irrigation (SAR <sup>*</sup> )                                                                                                                                         | 9                                       | 4            |  |  |  |  |
|               |                                                            | Irrigation by spraving (mg/l)                                                                                                                                                  | 69                                      | 4            |  |  |  |  |
|               | 31                                                         | Chlorine (CI)                                                                                                                                                                  |                                         | 1            |  |  |  |  |
|               |                                                            | .Irrigation de surface (mg/l)                                                                                                                                                  | 350                                     |              |  |  |  |  |
|               |                                                            | .Irrigation by spraying (mg/l)                                                                                                                                                 | 105                                     |              |  |  |  |  |
|               | 32                                                         | Boron (B) (mg/l)                                                                                                                                                               | 13                                      | 4            |  |  |  |  |
|               |                                                            | KIOUS PARAME LERS (affecting sensible cult<br>Temperature (°C)                                                                                                                 |                                         | 4            |  |  |  |  |
|               | 33                                                         | nH                                                                                                                                                                             | 65-84                                   | 4            |  |  |  |  |
|               | 35                                                         | Suspended solids in mg/l                                                                                                                                                       |                                         | 1            |  |  |  |  |
|               |                                                            | Gravitational irrigation                                                                                                                                                       | 2.000                                   |              |  |  |  |  |
|               |                                                            | Local irrigation and irrigation by spraying                                                                                                                                    | 100                                     |              |  |  |  |  |
|               | 36                                                         | Nitrates (N-NO <sub>3</sub> ) in mg/l                                                                                                                                          | 30                                      | -            |  |  |  |  |
|               | 37                                                         | Bicarbonate (HCO <sub>3</sub> ) (Irrigation by spraying                                                                                                                        | g 518                                   | 1            |  |  |  |  |
|               |                                                            | mg/l)                                                                                                                                                                          |                                         | 4            |  |  |  |  |
|               | 38                                                         | Sulfates (SO <sup>2</sup> . <sub>4</sub> ) en mg/l                                                                                                                             | 250                                     |              |  |  |  |  |
|               | *1.000                                                     | CF/100 ml for cultures intended for                                                                                                                                            | raw consumption (Controls               | are to be    |  |  |  |  |
|               | perfo                                                      | rmed only if the concerned water is likely                                                                                                                                     | to come in touch with wastev            | vater)       |  |  |  |  |

|                             | <ul> <li>** If electric conductivity (CE) exceeds 3mS/cm, severe restrictions are applied to water when it is to be used for irrigation, but the 50% of the potential yield can be irrigated with water of 8,7 mS/cm (in the case of barley).</li> <li>*** SAR = Sodium absorption ratio (coefficient of sodium absorption)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | Tunisia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Current<br>Situation        | Wastewater reuse in agriculture is regulated by the 1975 Water Code (law<br>No. 75-16 of 31 March 1975), by the 1989 Decree No. 89-1047 (28 July<br>1989), by the Tunisian standard for the use of treated wastewater in<br>agriculture (NT 106- 003 of 18 May 1989), by the list of crops than can be<br>irrigated with treated wastewater (Decision of the Minister of Agriculture of<br>21 June 1994) and by the list of requirements for agricultural wastewater<br>reuse projects (Decision of 28 September 1995). They prohibit the irrigation<br>of vegetables that might be consumed raw. Therefore, most of the recycled<br>wastewater is used to irrigate vineyards, citrus and other trees (olives,<br>peaches, pears, apples, pomegranates, etc.), fodder crops (alfalfa, sorghum,<br>etc), industrial crops (cotton, tobacco, sugarbeet, etc), cereals, and golf<br>courses (Tunis, Hammamet, Sousse, and Monastir). Some hotel gardens in<br>Jerba and Zarzis are also irrigated with recycled wastewater.<br>Irrigation with recycled wastewater is well established in Tunisia. A<br>Regional Department for Agricultural Development (CRDA) supervises the<br>operation and maintenance of the water distribution system and controls the<br>ambiastion of the Water Code |
| Institutional<br>Frameworkl | <ul> <li>Several ministries are responsible for water and wastewater planning, management, monitoring, and pollution control. An inventory of these agencies has been prepared to identify their mandate, responsibilities, and activities in connection with water quality. The main ministries and agencies include: <ul> <li>Ministry of Agriculture (MoA)</li> <li>Ministry of Environment and Land Use Planning (MoELUP)</li> <li>a. Agence Nationale de la Protection de l'Environnement (ANPE)</li> <li>b. Office National de l'Assainissement (ONAS)</li> </ul> </li> <li>Ministry of Public Health (MoH)</li> <li>Ministry of Industry (MoI)</li> <li>Ministry of Interior (MoInt)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                             | <ul> <li>Ministry of Agriculture: Responsible for all water management issues including planning, monitoring and implementing water resource allocation countrywide. The only significant responsibilities not covered by the ministry are pollution abatement and sewage treatment. The ministry carries out its work through a number of directorates.</li> <li>Direction Générale des Ressources en Eau (DGRE): This directorate is divided into two sub-divisions, one for surface water and another for groundwater. The responsibilities of DGRE include:</li> <li>Ensure the application of laws and regulations related to pollution abatement and groundwater.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | <ul><li>Develop research activities related to water and water quality.</li><li>Install and operate water quantity and quality networks for surface</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| <ul> <li>water and groundwater.</li> <li>Conduct studies for the evaluation of water resources and their exploitation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Direction Générale des Etudes des Travaux Hydrauliques (DGETH)</i> : This directorate is responsible for (i) the study of water quality in dams and (ii) the study, execution, construction, supervision, and operation and maintenance of irrigation and drainage infrastructure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <i>Direction Générale des Travaux Hydrauliques (DGTH)</i> : constructs large dams and irrigation infrastructure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <i>Direction Générale du Genie Rural (DGGR)</i> : produces and distributes potable water in dispersed rural areas of less than 500 inhabitants and develops irrigation projects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <i>Societe Nationale d'Exploitation et de Distribution des Eaux (SONEDE):</i> An autonomous public authority that treats and distributes potable water in urban areas and large villages with more than 500 inhabitants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>Ministry of Environment and Land Use Planning (MoELUP): formulates strategies, coordinates and controls activities for the protection of nature and the environment, pollution abatement, nuisance control, and improves the quality of life. The ministry has two major general directorates:</li> <li>Direction Générale de l'Amenagement du Teritore (DGAT): identifies measures for rational land management to ensure the sustainability of natural resources and protect fragile ecosystems.</li> <li>Direction Générale de l'Environnement et de la Qualite de Vie (DGEQV): evaluates the overall environment, proposes guidelines as part of a national strategy to protect the environment, develops action plans for natural resource conservation, and reduces pollution sources.</li> </ul> |
| Three autonomous organizations operate under the supervision of Ministere<br>de l'Environnement et de l'Amenagement du Territoire (MEAT) to ensure<br>monitoring, enforcement, pollution reduction and natural resources<br>protection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>Agence Nationale de Protection de L'Environnement (ANPE):<br/>executes the mandates of MEAT with respect to prevention,<br/>monitoring, enforcement and public awareness. ANPE manages the<br/>environmental impact assessment system and monitors industrial<br/>discharge and treatment units. The mandate has been broadened to<br/>include the reparation of ecological damage and the execution of a<br/>national solid waste management program.</li> <li>Office National de l'Assainissement (ONAS): monitors treated and<br/>discharged wastewater quality and ensures environmental protection.<br/>Manages sewage collection, treatment and disposal in urban<br/>agglomerations, and industrial and tourism zones.</li> </ul>                                                                |
| • Le Centre International des Technologies de l'Environnement de<br>Tunis (CITET): undertakes capacity building as well as research,<br>development and adaptation of technology and new innovations. At                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|                         | present CITET has broadened its activities to include: training,<br>technical assistance, information and documentation, and the<br>provision of laboratory testing for governmental organizations and<br>the private sector such as ONAS, ANPE and industries.                                                                                                                                                                                                  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Ministry of Public Health ( <i>Direction Générale de L'Hygienne du Milieu et de la Protection de l'Environnement - DHMPE</i> ): evaluates and monitors technical assistance, education, public awareness and research. It is also responsible for supervising the hygiene of public places (restaurants, hospitals, etc.) and controlling wastewater discharge from treatment plants.                                                                            |
|                         | <b>Ministry of Industry:</b> participates in elaborating government strategies for pollution abatement and environmental protection.                                                                                                                                                                                                                                                                                                                             |
|                         | <b>Ministry of the Interior</b> - <i>Direction Générale des Collectivités Publiques</i><br><i>Locales (DGCPL):</i> responsible for (i) the national program for<br>environmental protection and (ii) the legal and regulatory framework for the<br>environment and sanitation.                                                                                                                                                                                   |
|                         | In addition to the ministries responsible for water and wastewater management, there are several consultative institutions including:                                                                                                                                                                                                                                                                                                                            |
|                         | <ul> <li>Commission for Public Hydraulic Domain</li> <li>National Comity for Water</li> <li>National Commission for Environment</li> <li>National Commission for Sustainable Development</li> <li>National Commission for Conservation of Water and Soil.</li> </ul>                                                                                                                                                                                             |
|                         | At the national level, a number of institutions have responsibilities with<br>respect to water quality and the abatement of hydraulic pollution. These<br>institutions are:                                                                                                                                                                                                                                                                                      |
|                         | <ul> <li>Commissariat Régional au Développement Agricole (CRDA): assumes, at the regional level, the responsibilities of the Ministry of Agriculture with respect to the protection and preservation of hydraulic resources. The CRDA is assisted by the following institutions:</li> <li>Le Comité Consultatif</li> <li>Les Groupements Régionaux de la Conservation des Eaux et Sols</li> <li>Les Associations de la Conservation des Eaux et Sols.</li> </ul> |
| Regulatory<br>Framework | In 1975 Tunisia developed the water code Le Code des Eaux under Law No.<br>75. This code includes several articles related to the protection and<br>preservation of surface and groundwater as well as water reuse for<br>agricultural purposes.                                                                                                                                                                                                                 |
|                         | <ul> <li>Other laws and decrees that address pollution and water resources protection have also been issued and include:</li> <li>Decree No. 79-768 (1979) regulating the connection and discharge of wastewater effluents into the public sewer system.</li> <li>Decree No. 85–56 (1985) regulating the discharge of wastewater into the environment.</li> </ul>                                                                                                |

| Invioation              | <ul> <li>Decree No. 89–1047 (1989) m<br/>identifying conditions for the<br/>irrigation.</li> <li>Decree No. 91-362 (199<br/>environmental impact asses<br/>obtaining a license for the cor<br/>commercial establishments.</li> <li>Law No. 92-115 (1992) regula</li> <li>Ministerial Decree (1995) m<br/>conditions for the reuse of treat</li> <li>In addition, the Tunisian governme<br/>related to water quality:</li> <li>N.T 09.14 (1987) – quality of p</li> <li>N.T 09.13 (1983) – quality of<br/>source for potable water.</li> <li>N.T 106.03 (1989) – standards<br/>irrigation purposes.</li> <li>N.T 106.02 (1989) – stan<br/>wastewater.</li> </ul> | hodified by decree No. 93–2447 (1993)<br>reutilization of treated wastewater for<br>1) requesting the preparation of<br>sment studies as a prerequisite to<br>hstruction of industrial, agricultural and<br>uting industrial activities and discharge.<br>relating the modalities and specific<br>ted wastewater for irrigation.<br>Int has issued a number of standards<br>potable water.<br>of surface water that can be used as a<br>s for the reuse of treated wastewater for<br>dards for the discharge of treated |  |  |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Irrigation<br>Standards | Parameters (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Maximum allowed concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| (N T 106.03)            | pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.5 - 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| $(10.1\ 100.05)$        | Electrical conductivity (EC) (µS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| (1989))                 | Biochemical oxygen demand (BOD5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 (b), (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                         | Suspended solids (SS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                         | Chloride (Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                         | Fluoride (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                         | Arsenic (As)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                         | Boron (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                         | Cadmium (Cd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                         | Cobalt (Co)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                         | Chromium (Cr)<br>Copper (Cu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                         | Iron (Fe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                         | Manganese (Mn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                         | Mercury (Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                         | Lead (Pb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                         | Selenium (Se)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                         | Intestinal nematodes (arithmetic mean no. of eggs per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                         | litre)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| $\mathbf{D}$ : 1 C      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Discharge of            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Treated                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Wastewater              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| N.T 106.02              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| (1989)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| -                       | Turkey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Current                 | The use of reused water for irrigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in Turkey is mainly due to the scarcity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Situation               | of water resources and inefficient water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er resource management, both of which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                         | are exacerbated by growing population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n, economic conditions and increasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                         | urbanization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                         | Although, domestic wastewater should                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d not be used directly without proper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |

|                            | treatment, it contains nutrients, which are essential for plant growth and can<br>be used after treatment as a water resource in a more convenient way.<br>Especially in arid summer times in which irrigation activities should be<br>increased for agricultural production, it can be said that wastewater is reused<br>for irrigation in some cases. As a result the concentration of nitrogen,<br>phosphorus, salinity, biodegradable organic materials, trace elements may<br>depict subsequent increases in the agricultural production areas if wastewater<br>not treated properly. Boron is another parameter which should be given<br>special emphasize since, high boron loaded characteristic of the water source,<br>since accumulation of boron in such a heavy soil due to irrigation will lead to<br>sharp decrease in agricultural productivity.<br>Technical regulations and constraints for the use of wastewater effluents for<br>agricultural purposes, with reference to Water Pollution Control Regulations<br>are used in Turkey. In addition to the regulations there are other criteria<br>included, regarding the classification of the waters to be used for irrigation,<br>maximum allowable heavy metal and toxic elements concentrations as well<br>as the mass limits for application of these pollutants in terms of unit<br>agricultural areas. |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Institutional<br>Framework | The Turkish institutional framework for water, wastewater and agricultural irrigation is summarised in the following figure. In this figure the ministries and organisations, their related, affiliated, and bounded institutions and units are given. Their relationships are indicated. The major aspects of the framework are explained below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



|               | Organization (SPO) prepares national development plans and programmes,  |                                                                      |            |                     |                         |                          |                   |                 |
|---------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|------------|---------------------|-------------------------|--------------------------|-------------------|-----------------|
|               | and coordinates financial support for investments. The Turkish laws and |                                                                      |            |                     |                         |                          |                   |                 |
|               | regulations                                                             | regulations related with wastewater treatment disposal and reuse are |            |                     |                         |                          |                   |                 |
|               | summarised here.                                                        |                                                                      |            |                     |                         |                          | ieuse uie         |                 |
|               | summarised here.                                                        |                                                                      |            |                     |                         |                          |                   |                 |
|               | Voor                                                                    | Fetablish                                                            | nont       | Low/Dog             | ulation/Bu              | llatin                   |                   |                 |
|               | 1083                                                                    | MoEE                                                                 | nent       | Environm            | ant Low                 | lletill                  |                   |                 |
|               | 1985                                                                    | MoEF                                                                 |            | Water Dol           | ution Cont              | rol Dogul                | tion (WDCD)       | )               |
|               | 1988                                                                    | MoEF                                                                 |            | WDCD A              | Ininistratio            | n Aspert                 | Dullatin          | )               |
|               | 1989                                                                    | MOEF                                                                 |            | WPCK AC             | avia and I              | In Aspects               | Substances        | in Water        |
|               | 1989                                                                    | MOEF                                                                 |            | WPCK I<br>Dullatin  | oxic and r              | hazardous                | Substances        | in water        |
|               | 1001                                                                    | MoFF                                                                 |            | WPCP Te             | chnical As              | nects Bull               | etin              |                 |
|               | 1995                                                                    | MoARA                                                                |            | Aquatic P           | roducts Reg             | peeus Dun<br>sulation    | etili             |                 |
|               | 2001                                                                    | MoEE                                                                 |            | Environm            | ental Inspe             | ction Regi               | ilation           |                 |
|               | 2001                                                                    | MoEF                                                                 |            | Environm            | ental Impa              | ot Assessn               | ent Regulation    | )n              |
|               | 2002                                                                    | WIULI                                                                |            | LIIVIIOIIIII        |                         | 1 13503511               | ient Regulatio    |                 |
| D' 1          |                                                                         |                                                                      |            |                     |                         |                          |                   |                 |
| Discharge     | Class 1 – Poll                                                          | ution load.                                                          | 5-60 kg/d: | av BOD P            | onulation <             | 1000                     |                   |                 |
| Standards of  |                                                                         | unen ieuu.                                                           | Composi    | ite sample          | Composite s             | ample                    |                   |                 |
| Domestic      | Parameter                                                               | Unit                                                                 | (2         | hrs)                | (24 hrs                 | 5)                       |                   |                 |
| Wastewaters   | BOD <sub>5</sub>                                                        | mg/l                                                                 | 4          | 50                  | 45                      |                          |                   |                 |
| to Receiving  | SS                                                                      | mg/l                                                                 | 1          | 80                  | 120                     |                          |                   |                 |
| Bodies        | pH                                                                      | iiig/i                                                               | 6          | -9                  | 6-9                     |                          |                   |                 |
| Douies        |                                                                         | •                                                                    |            | ·                   |                         |                          |                   |                 |
|               | Class 2 – Poll                                                          | ution load:                                                          | 50-600 kg  | /day BOD,           | Population              | <u>n: 1000-</u> 10       | 000               |                 |
|               | Parameter                                                               | Unit                                                                 | Composi    | ite sample          | Composite s             | sample                   |                   |                 |
|               | BOD                                                                     | mg/l                                                                 | (2         | nrs)<br>50          | (24 nrs<br>45           | 5)                       |                   |                 |
|               | COD                                                                     | mg/l                                                                 | 1          | 60                  | 110                     |                          |                   |                 |
|               | SS                                                                      | mg/l                                                                 | (          | 50                  | 30                      |                          |                   |                 |
|               | pН                                                                      |                                                                      | 6          | -9                  | 6-9                     |                          |                   |                 |
|               | Class 3 – Poll                                                          | ution load >                                                         | 600 kg/d   | av ROD P            | onulation >             | > 10000                  |                   |                 |
|               |                                                                         |                                                                      | Composi    | ite sample          | Composite s             | ample                    |                   |                 |
|               | Parameter                                                               | Unit                                                                 | (2         | hrs)                | (24 hrs                 | 5)                       |                   |                 |
|               | BOD <sub>5</sub>                                                        | mg/l                                                                 | 4          | 50                  | 45                      |                          |                   |                 |
|               | COD                                                                     | mg/l                                                                 | 1          | 40                  | 100                     |                          |                   |                 |
|               | nH                                                                      | mg/1                                                                 | 6          | -9                  | <u> </u>                |                          |                   |                 |
|               | pii                                                                     |                                                                      |            |                     | 0 )                     |                          |                   |                 |
|               | Class 4 - For                                                           | domestic wa                                                          | astewater  | treatment p         | olants treati           | ng with st               | abilization po    | nds             |
|               | (independent                                                            | of populatio                                                         | n)         |                     |                         | -                        | -                 |                 |
|               | Parameter                                                               | Unit                                                                 | Composi    | ite sample          | Composite s             | ample                    |                   |                 |
|               | POD                                                                     | mg/l                                                                 | (2         | hrs)                | (24 hrs                 | 5)                       |                   |                 |
|               | COD                                                                     | mg/l                                                                 | 1          | 50                  | 100                     |                          |                   |                 |
|               | SS                                                                      | mg/l                                                                 | 2          | 00                  | 150                     |                          |                   |                 |
|               | pН                                                                      |                                                                      | 6          | -9                  | 6-9                     |                          |                   |                 |
| <b>*</b> • •  |                                                                         |                                                                      |            |                     |                         |                          |                   |                 |
| Irrigation    |                                                                         |                                                                      |            | Irrigation          | Water Class             |                          |                   |                 |
| Water Quality | Quality Crita                                                           |                                                                      |            | I. Class            | II. Class               | III. Class               | IV. Class         | V. Class        |
| Parameters    | Quality Criter                                                          | la                                                                   |            | (very good)         | (good)                  | (usable)                 | (usable with      | (detrimental,   |
|               | EC25 - 10(                                                              |                                                                      |            | 0. 250              | 250 750                 | 750 2000                 | caution)          | unusable)       |
|               | Variable Sodi                                                           | um Percentage                                                        | (%Na)      | $\frac{0-250}{<20}$ | 250 - 750<br>20 - 40    | $\frac{750-2000}{40-60}$ | 2000-3000         | > 3000          |
|               | Sodium Adso                                                             | rption Ratio (S                                                      | AR)        | < 10                | 10-18                   | 18-26                    | > 26              |                 |
|               | Sodium Carbo                                                            | onate Residue (                                                      | RSC),      | > 1.25              | 1.25 - 2.5              | > 2.5                    |                   |                 |
|               | meq/l                                                                   |                                                                      |            | < 66                | 66 - 133                | > 133                    |                   |                 |
|               | Chloride (Cl-                                                           | ), mea/l                                                             |            | 0 - 4               | 4 – 7                   | 7 – 12                   | 12 - 20           | > 2.0           |
|               | mg/l                                                                    | ,,                                                                   |            | 0 - 142             | 142 - 249               | 249 - 426                | 426 - 710         | > 710           |
|               | Sulphate (SO                                                            | 4-), meq/l                                                           |            | 0-4                 | 4 - 7                   | 7-12                     | 12 - 20           | > 20            |
|               | mg/l<br>Total salt com                                                  | centration (ma                                                       | /1)        | 0 - 192<br>0 175    | 192 - 336               | 336 - 575                | 575 - 960         | > 960<br>> 2100 |
|               | Boron concer                                                            | tration (mg/l)                                                       | 1)         | 0 - 1/3<br>0 - 0.5  | 173 - 323<br>0.5 - 1.12 | 1.12 - 2                 | > 2               | ~ 2100          |
|               | Irrigation wat                                                          | er class                                                             |            | $C_1S_1$            | $C_1S_2, C_2S_2,$       | $C_1S_3, C_2S_3$         | $C_1S_4, C_2S_4,$ |                 |

|                |                                                                                                                                                                                   |                        |                       | $C_2S_1$        | $C_2S_2C_2$   | $S_2$ $C_2S_4, C_4S_4$ |                  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|-----------------|---------------|------------------------|------------------|
|                |                                                                                                                                                                                   |                        |                       | - 2 - 1         | $C_3S_1$      | $C_4S_3, C_4S_2,$      |                  |
|                |                                                                                                                                                                                   |                        |                       |                 |               | $C_4S_1$               |                  |
|                | NO <sub>3</sub> - or NH <sup>4</sup> +, mg/l                                                                                                                                      |                        | 0-5                   | 5 - 10          | 10-3          | 30 - 50                | > 50             |
|                | Fecal Coliforms** (per 100ml)                                                                                                                                                     |                        | 0 - 2                 | 2 - 20          | 20-10         | 00 100 - 1000          | > 1000           |
|                | BOD5 (mg/l)                                                                                                                                                                       |                        | 0-25                  | 25 - 50         | 50 - 10       | 00 100 - 200           | > 200            |
|                | Suspended Solid Matter                                                                                                                                                            | (mg/l)                 | 20                    | 30              | 45            | 60                     | > 100            |
|                | pH                                                                                                                                                                                |                        | 6.6 - 8.5             | 6.5 - 8.5       | 6.5 - 8       | 6.5 – 9                | < 6 or >9        |
|                | Temperature                                                                                                                                                                       |                        | 30                    | 30              | 35            | 40                     | >40              |
| Maximum        |                                                                                                                                                                                   |                        |                       |                 |               |                        |                  |
|                |                                                                                                                                                                                   |                        |                       | Permissi        | ible maxir    | mum concentratio       | ons              |
| Concentration  |                                                                                                                                                                                   | Maximum to             | tal Limi              | its for continu | ous           | Limits for irrigation  | on for less than |
| of Heavy       |                                                                                                                                                                                   | amounts per            | r irriga              | tion under all  | soil          | 24 years on clayer     | y soils with pH  |
| Metal &        | Elements                                                                                                                                                                          | unit area, kg/         | ha co                 | nditions, mg/   | 1             | value 6.0-8            | .5, mg/1         |
|                | Aluminium (Al)                                                                                                                                                                    | 4600                   |                       | 5.0             |               | 20.0                   | )                |
| I OXIC         | Arsenic (As)                                                                                                                                                                      | 90                     |                       | 0.1             |               | 2.0                    |                  |
| Elements for   | Berlyllium (Be)                                                                                                                                                                   | 90                     |                       | 0.1             |               | 0.5                    |                  |
| Irrigation     | Boron (B)                                                                                                                                                                         | 680                    |                       | -3              |               | 2.0                    |                  |
| Inigation      | Cadmium (Cd)                                                                                                                                                                      | 9                      |                       | 0.01            |               | 0.05                   |                  |
| Water          | Chrome (Cr)                                                                                                                                                                       | 90                     |                       | 0.05            |               | 1.0                    |                  |
|                | Coball (Co)                                                                                                                                                                       | 45                     |                       | 0.05            |               | 5.0                    |                  |
|                | Copper (Cu)                                                                                                                                                                       | 020                    |                       | 0.2             |               | 5.0                    | )                |
|                | Iron (Fe)                                                                                                                                                                         | 920                    |                       | 5.0             |               | 20.0                   | )                |
|                | Lead (Pb)                                                                                                                                                                         | 4600                   |                       | 5.0             |               | 20.0                   | )                |
|                | Lead $(10)$                                                                                                                                                                       | 4000                   |                       | 2.5             |               | 2.5                    | )                |
|                | Manganese (Mn)                                                                                                                                                                    | 920                    |                       | 0.2             |               | 10 (                   | )                |
|                | Molybdenum (Mo)                                                                                                                                                                   | 9                      |                       | 0.01            |               | 0.05                   | 2                |
|                | Nickel (Ni)                                                                                                                                                                       | 920                    |                       | 0.01            |               | 2.0                    |                  |
|                | Selenium (Se)                                                                                                                                                                     | 16                     |                       | 0.02            |               | 0.02                   | ,                |
|                | Vanadium (V)                                                                                                                                                                      | -                      |                       | 0.1             |               | 1.0                    | -                |
|                | Zinc (Zn)                                                                                                                                                                         | 1840                   |                       | 2.0             |               | 10.0                   | )                |
|                | <sup>1</sup> 0.075 mg/1 for citrus<br><sup>2</sup> Concentration allowed                                                                                                          | only for acidic-c      | layey soils w         | ith high iron c | content       |                        |                  |
| Irrigation     |                                                                                                                                                                                   |                        | Boron                 | concentration   | in irrigati   | ion water (mg/1)       |                  |
| Water          |                                                                                                                                                                                   | Sensitiv               | ve crons <sup>1</sup> | concentration   | i ili iligati | Res                    | istant crons 3   |
| Classification | Irrigation water class                                                                                                                                                            | (m                     | g/1)                  | Fairly sensi    | tive crops    | <sup>2</sup> (mg/l)    | (mg/l)           |
|                | I                                                                                                                                                                                 | less than 0            | 0.33                  | less than 0.6   | 57            | less the               | an 1.0           |
|                | 11<br>11                                                                                                                                                                          | 0.33-0.67              |                       | 0.67-1.33       |               | 1.00-2                 | .00              |
|                |                                                                                                                                                                                   | 0.67-1.00              |                       | 1.33-2.00       |               | 2.00-3                 | .00              |
|                | I V<br>V                                                                                                                                                                          | 1.00-1.23<br>more than | 1.25                  | 2.00-2.30       | 50            | 5.00-5<br>more f       | ./J<br>han 3 75  |
|                | <sup>1</sup> · Evample: walnut lem                                                                                                                                                | on fig apple g         | 1.2J                  | n beans         | .50           | more t                 | nan 3.73         |
|                | <ul> <li><sup>2</sup> : Example: wheat, barley, maize, oat, olive, cotton</li> <li><sup>3</sup> : Example: sugar beet, clover, broad beans, onion, cos lettuce, carrot</li> </ul> |                        |                       |                 |               |                        |                  |



|                   | United States of America                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Official name     | EPA/625/R-04/108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | Guidelines for Water Reuse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Area of reference | U.S. Environmental Protection Agency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | Municipal Support Division Office of Wastewater Management Office of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Scope             | Water Washington, DC<br>Regulations refer to actual rules that have been enacted and are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Scope             | Regulations refer to actual rules that have been enacted and are<br>enforceable by government agencies. Guidelines, on the other hand, are<br>not enforceable but can be used in the development of a reuse program.<br>Currently, there are no federal regulations directly governing water reuse<br>practices in the U.S. Water reuse regulations and guidelines have,<br>however, been developed by many individual states. As of November<br>2002, 25 states had adopted regulations regarding the reuse of reclaimed<br>water, 16 states had guidelines or design standards, and 9 states had no<br>regulations or guidelines. In states with no specific regulations or<br>guidelines on water reclamation and reuse, programs may still be<br>permitted on a case-by-case basis. Regulations and guidelines vary<br>considerably from state to state. States such as Arizona, California,<br>Colorado, Florida, Georgia, Hawaii, Massachusetts, Nevada, New Jersey,<br>New Mexico, North Carolina, Ohio, Oregon, Texas, Utah, Washington,<br>and Wyoming have developed regulations or guidelines that strongly<br>encourage water reuse as a water resources conservation strategy. These<br>states have developed comprehensive regulations or guidelines specifying<br>water quality requirements, treatment processes, or both, for the full<br>spectrum of reuse applications. The objective in these states is to derive<br>the maximum resource benefits of the reclaimed water while protecting<br>the environment and public health. Other states have developed water<br>reuse regulations with the primary intent of providing a disposal<br>alternative to discharge to surface waters, without considering the |
|                   | management of reclaimed water as a resource. This section provides an inventory of the various state water reuse regulations throughout the U.S. and updates recommended guidelines that may aid in the development of more commended and for water reuse.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Monitoring scope  | more comprehensive state or even federal standards for water reuse.<br>Current regulations and guidelines may be divided into the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | <ul> <li>Unrestricted urban reuse – irrigation of areas in which public access is not restricted, such as parks, playgrounds, school yards, and residences; toilet flushing, air conditioning, fire protection, construction, ornamental fountains, and aesthetic impoundments.</li> <li>Restricted urban reuse – irrigation of areas in which public access can be controlled, such as golf courses, cemeteries, and highway medians.</li> <li>Agricultural reuse on food crops – irrigation of food crops which are intended for direct human consumption, often further classified as to whether the food crop is to be processed or consumed raw.</li> <li>Agricultural reuse on non-food crops – irrigation of fodder, fiber, and seed crops, pasture land, commercial nurseries, and sod farms.</li> <li>Unrestricted recreational reuse – an impoundment of water in which no limitations are imposed on body-contact water</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|              | re<br>Ra<br>Wa<br>nc<br>En<br>Wa<br>stu<br>In<br>pr<br>of<br>pc<br>In<br>re<br>be<br>States wit<br>water for<br>To<br>M<br>W<br>Fi<br>Je<br>Ca<br>Na<br>En<br>States States<br>States States<br>States<br>States States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>States<br>State | creation a<br>estricted r<br>ater in wh<br>on-contac<br>nvironme<br>etlands, e<br>ream flow<br>dustrial r<br>imarily fo<br>ocess wa<br>roundwat<br>onds, or in<br>direct por<br>claimed v<br>e used as a<br>ch regulat<br>the follow<br>oilet Flush<br>assachuse<br>ashington<br>re Protec<br>rsey, Nor<br>onstructio<br>ew Jersey<br>andscape<br>olorado, I<br>regon, Te<br>reet Clea<br>arolina, ar | activities.<br>recreation<br>nich recreation<br>nich recreation<br>ntal reuse<br>nhance naves.<br>euse – recorr cooling<br>ter, and g<br>er recharg<br>njection w<br>table reus<br>vater into<br>a source of<br>ions or gu<br>wing unreching – Ar<br>etts, New<br>n<br>tion – Ari<br>th Carolii<br>on Purpos<br>v, North C<br>or Aesthe<br>Florida, H<br>exas, and<br>ning – Ar<br>nd Washi | al reuse -<br>tation is li<br>onal activ<br>e – reclair<br>atural we<br>claimed v<br>g system f<br>eneral wa<br>ge – using<br>vells to re<br>of potable<br>uidelines<br>estricted u<br>izona, Ca<br>na, Texas<br>es – Ariz<br>Carolina, Q<br>etic Impo<br>lawaii, Ne<br>Washingt<br>rizona, Ca | - an impo<br>mited to<br>ities.<br>ned water<br>tlands, an<br>vater used<br>make-up<br>ishdown.<br>g infiltraticharge ac<br>tentional<br>waters or<br>e water.<br>pertaining<br>ifornia, T<br>borth Car<br>lifornia, T<br>dona, Cali<br>Oregon, U<br>undments<br>evada, Ne<br>on<br>ilifornia, | oundment<br>fishing, b<br>r used to<br>d sustain<br>l in indus<br>water, bo<br>ion basins<br>quifers.<br>discharge<br>groundw<br>g to the u<br>se categon<br>Florida, H<br>olina, Tez<br>Florida, H<br>nd Washi<br>fornia, Fl<br>Jtah, and<br>s – Arizor<br>ew Jersey<br>Florida, H | of reclain<br>coating, an<br>create ma<br>or augment<br>trial facil<br>iler-feed<br>s, percola<br>e of highl<br>ater that a<br>se of recl<br>ries are:<br>Hawaii, N<br>ngton<br>orida, Ha<br>Washing<br>na, Califo<br>, North C<br>Hawaii, N | med<br>nd other<br>anmade<br>ent<br>ities<br>water,<br>ation<br>ly treated<br>are or will<br>aimed<br>, and<br>ew<br>waii,<br>ton<br>ornia,<br>Carolina,<br>North |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                                                   |
| Unrestricted |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arizona                                                                                                                                                                                                                                                                                                                                                                                               | California                                                                                                                                                                                                                                                                                                                                                                                  | Florida                                                                                                                                                                                                                                                                                        | Haw aii                                                                                                                                                                                                                                                                                        | Nevada                                                                                                                                                                                                                                                                              | Texas                                                                                                                                                                                                                                        | Washington                                                                                                                                                        |
| Urban Reuse  | Treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Secondary<br>treatment,<br>filtration, and<br>disinfection                                                                                                                                                                                                                                                                                                                                            | Oxidized,<br>coagulated,<br>filtered, and<br>disinfected                                                                                                                                                                                                                                                                                                                                    | Secondary<br>treatment,<br>filtration, and<br>high-level<br>disinfection                                                                                                                                                                                                                       | Oxidized,<br>filtered, and<br>disinfected                                                                                                                                                                                                                                                      | Secondary<br>treatment and<br>disinfection                                                                                                                                                                                                                                          | NS <sup>(1)</sup>                                                                                                                                                                                                                            | Oxidized,<br>coagulated,<br>filtered, and<br>disinfected                                                                                                          |
|              | BOD₅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NS                                                                                                                                                                                                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                          | 20 mg/l<br>CBOD₅                                                                                                                                                                                                                                                                               | NS                                                                                                                                                                                                                                                                                             | 30 mg/l                                                                                                                                                                                                                                                                             | 5 mg/l                                                                                                                                                                                                                                       | 30 mg/l                                                                                                                                                           |
|              | TSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NS                                                                                                                                                                                                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                          | 5.0 mg/l                                                                                                                                                                                                                                                                                       | NS                                                                                                                                                                                                                                                                                             | NS                                                                                                                                                                                                                                                                                  | NS                                                                                                                                                                                                                                           | 30 mg/l                                                                                                                                                           |
|              | Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 NTU (Avg)<br>5 NTU (Max)                                                                                                                                                                                                                                                                                                                                                                            | 2 NTU (Avg)<br>5 NTU (Max)                                                                                                                                                                                                                                                                                                                                                                  | NS                                                                                                                                                                                                                                                                                             | 2 NTU (Max)                                                                                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                  | 3 NTU                                                                                                                                                                                                                                        | 2 NTU (Avg)<br>5 NTU (Max)                                                                                                                                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fecal                                                                                                                                                                                                                                                                                                                                                                                                 | Total                                                                                                                                                                                                                                                                                                                                                                                       | Fecal                                                                                                                                                                                                                                                                                          | Fecal                                                                                                                                                                                                                                                                                          | Fecal                                                                                                                                                                                                                                                                               | Fecal                                                                                                                                                                                                                                        | Total                                                                                                                                                             |
|              | Coliform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None<br>detectable<br>(Avg)                                                                                                                                                                                                                                                                                                                                                                           | 2.2/100 ml<br>(Avg)                                                                                                                                                                                                                                                                                                                                                                         | 75% of<br>samples below<br>detection                                                                                                                                                                                                                                                           | 2.2/100 ml<br>(Avg)                                                                                                                                                                                                                                                                            | 2.2/100 ml<br>(Avg)                                                                                                                                                                                                                                                                 | 20/100 ml<br>(Avg)                                                                                                                                                                                                                           | 2.2/100 ml<br>(Avg)                                                                                                                                               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23/100 ml<br>(Max)                                                                                                                                                                                                                                                                                                                                                                                    | 23/100 ml<br>(Max in 30<br>days)                                                                                                                                                                                                                                                                                                                                                            | 25/100 ml<br>(Max)                                                                                                                                                                                                                                                                             | 23/100 ml<br>(Max in 30<br>days)                                                                                                                                                                                                                                                               | 23/100 ml<br>(Max)                                                                                                                                                                                                                                                                  | 75/100 ml<br>(Max)                                                                                                                                                                                                                           | 23/100 ml<br>(Max)                                                                                                                                                |
|              | ਾ NS - Not so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ecified by state                                                                                                                                                                                                                                                                                                                                                                                      | e regulations                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                                                   |

| Restricted Urban      |                                  | Arizona                                       | California                                                | Florida                                                     | Haw aii                                   | Nevada                                     | Texas                    | Washington                                               |
|-----------------------|----------------------------------|-----------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------|----------------------------------------------------------|
| Reuse                 |                                  | <b>0</b>                                      | - · ·                                                     | Secondary                                                   |                                           |                                            |                          |                                                          |
|                       | Treatment                        | Secondary<br>treatment and<br>disinfection    | Secondary –<br>23, oxidized,<br>and disinfected           | treatment,<br>filtration, and<br>high-level<br>disinfection | Oxidized and<br>disinfected               | Secondary<br>treatment and<br>disinfection | NS (1)                   | Oxidized and<br>disinfected                              |
|                       | BOD <sub>5</sub>                 | NS                                            | NS                                                        | 20 mg/l<br>GBOD₅                                            | NS                                        | 30 mg/l                                    | 20 mg/l                  | 30 mg/l                                                  |
|                       | TSS                              | NS                                            | NS                                                        | 5 mg/l                                                      | NS                                        | NS                                         | NS                       | 30 mg/l                                                  |
|                       | Turbidity                        | NS                                            | NS                                                        | NS                                                          | 2 NTU (Max)                               | NS                                         | 3 NTU                    | 2 NTU (Avg)                                              |
|                       |                                  | Fecal                                         | Total                                                     | Fecal                                                       | Fecal                                     | Fecal                                      | Fecal                    | 5 NTU (Max)<br>Total                                     |
|                       |                                  | , cour                                        | rotur                                                     | 75% of                                                      | , cour                                    | redui                                      | redui                    | Total                                                    |
|                       | Coliform                         | 200/100 ml<br>(Avg)                           | 23/100 ml<br>(Avg)                                        | samples below<br>detection                                  | 23/100 ml<br>(Avg)                        | 23/100 ml<br>(Avg)                         | 200/100 ml<br>(Avg)      | 23/100 ml<br>(Avg)                                       |
|                       |                                  | 800/100 ml<br>(Max)                           | 240/100 ml<br>(Max in 30<br>davs)                         | 25/100 ml<br>(Max)                                          | 200/100 ml<br>(Max)                       | 240/100 ml<br>(Max)                        | 800/100 ml<br>(Max)      | 240/100 ml<br>(Max)                                      |
|                       | <sup>(1)</sup> NS - Not sp       | ecified by stat                               | e regulations                                             |                                                             |                                           | ļ                                          | Į                        | <b>↓</b> →                                               |
| Agricultural          |                                  | Arizona                                       | California                                                | Florida                                                     | Haw aii                                   | Nevada                                     | Texas                    | Washington                                               |
| Reuse                 | Treatment                        | Secondary<br>treatment and<br>disinfection    | Secondary-23,<br>Oxidized, and<br>disinfected             | Secondary<br>treatment,<br>basic<br>disinfection            | Oxidized,<br>filtered, and<br>disinfected | Secondary<br>treatment and<br>disinfection | NS <sup>(1)</sup>        | Oxidized and<br>disinfected                              |
|                       | BOD₅                             | NS                                            | NS                                                        | 20 mg/l<br>GBOD₅                                            | NS                                        | 30 mg/l                                    | 5 mg/l                   | 30 mg/l                                                  |
|                       | TSS                              | NS                                            | NS                                                        | 20 mg/i                                                     | NS                                        | NS                                         | NS                       | 30 mg/l                                                  |
|                       | Turbidity                        | NS                                            | NS                                                        | NS                                                          | 2 NTU (Max)                               | NS                                         | 3 NTU                    | 2 NTU (Avg)                                              |
|                       |                                  | E l                                           | Tatal                                                     | [ seed                                                      | El                                        | E l                                        | Freed                    | 5 NTU (Max)                                              |
|                       |                                  | Fecal<br>200/100 ml                           | 23/100 ml                                                 | Fecal<br>200/100 ml                                         | Fecal<br>2 2/100 ml                       | Fecal<br>200/100 ml                        | Pecal<br>20/100 ml       | 23/100 ml                                                |
|                       | Coliform                         | (Avg)                                         | (Avg)                                                     | (Avg)                                                       | (Avg)                                     | (Avg)                                      | (Avg)                    | (Avg)                                                    |
|                       |                                  | 800/100 ml<br>(Max)                           | 240/100 mi<br>(Max in 30<br>days)                         | 800/100 ml<br>(Max)                                         | 23/100 ml<br>(Max)                        | 400/100 ml<br>(Max)                        | 75/100 ml<br>(Max)       | 240/100 ml<br>(Max)                                      |
|                       | <sup>(1)</sup> NS - Not sp       | ecified by stat                               | e regulations                                             |                                                             |                                           |                                            |                          |                                                          |
| Unrestricted          |                                  | Arizona                                       | California                                                | Florida                                                     | Haw aii                                   | Nevada                                     | Texas                    | Washington                                               |
| Recreational<br>Reuse | Treatment                        | NR <sup>(1)</sup>                             | coagulated,<br>clarified,<br>filtered, and<br>disinfected | NR                                                          | NR                                        | Secondary<br>treatment and<br>disinfection | NS                       | Oxidized,<br>coagulated,<br>filtered, and<br>disinfected |
|                       | BOD <sub>5</sub>                 | NR                                            | NS <sup>(2)</sup>                                         | NR                                                          | NR                                        | 30 mg/l                                    | 5 mg/l                   | 30 mg/l                                                  |
|                       | TSS                              | NR                                            | NS<br>2 NTH (Avg)                                         | NR                                                          | NR                                        | NS                                         | NS                       | 30 mg/l                                                  |
|                       | Turbidity                        | NR                                            | 5 NTU (Max)                                               | NR                                                          | NR                                        | NS                                         | 3 NTU                    | 5 NTU (Max)                                              |
|                       |                                  |                                               | Total<br>2.2/100 ml                                       |                                                             |                                           | Fecal<br>2.2/100 ml                        | Fecal<br>20/100 ml (Avg) | Fecal<br>2.2/100 ml                                      |
|                       | Coliform                         | NR                                            | (Avg)<br>23/100 ml (Max                                   | NR                                                          | NR                                        | (AVg)<br>23/100 ml<br>(Max)                | 75/100 ml                | (Avg)<br>23/100 ml<br>(Max)                              |
|                       | (1) NR - Not i                   | egulated by t                                 | ne state                                                  |                                                             |                                           | (max)                                      | (max)                    | (max)                                                    |
| <b>D</b>              | (2) NS - Not s                   | specified by st                               | ate regulations                                           |                                                             | 1                                         |                                            | -                        |                                                          |
| Restricted            |                                  | Secondary                                     | California                                                | Florida                                                     | Haw aii                                   | Nevada                                     | lexas                    | Washington                                               |
| Recreational<br>Reuse | Treatment                        | treatment,<br>filtration, and<br>disinfection | Secondary-23,<br>oxidized, and<br>disinfected             | NR <sup>(1)</sup>                                           | Oxidized,<br>filtered, and<br>disinfected | Secondary<br>treatment and<br>disinfection | NS                       | Oxidized and<br>disinfected                              |
|                       | BOD <sub>5</sub>                 | NS <sup>(2)</sup>                             | NS                                                        | NR                                                          | NS                                        | 30 mg/l                                    | 20 mg/l                  | 30 mg/l                                                  |
|                       | TSS                              | NS                                            | NS                                                        | NR                                                          | NS                                        | NS                                         | NS                       | 30 mg/I                                                  |
|                       | Turbidity                        | 2 NTU (Avg)                                   | NS                                                        | NR                                                          | 2 NTU (Max)                               | NS                                         | NS                       | 2 NTU (Avg)                                              |
|                       |                                  | Fecal                                         | Total                                                     | 1                                                           | Fecal                                     | Fecal                                      | Fecal                    | Total                                                    |
|                       | Coliform                         | None<br>detectable<br>(Avg)                   | 2.2/100 ml (Avg)                                          | NR                                                          | 2.2/100 ml<br>(Avg)                       | 200/100 ml<br>(Avg)                        | 200/100 ml<br>(Avg)      | 2.2/100 ml (Avg)                                         |
|                       |                                  | 23/100 ml<br>(Max)                            | 23/100 ml (Max ir<br>30 days)                             | n                                                           | 23/100 ml<br>(Max)                        | 23/100 ml<br>(Max)                         | 800/100 ml<br>(Max)      | 23/100 ml (Max)                                          |
|                       | (1) NR - Not r<br>(2) NS - Not s | egulated by t<br>pecified by st               | ne state<br>ate regulations                               |                                                             | -                                         |                                            |                          |                                                          |

| Groundwater |                                                                                                  | Arizona                                                                   | California <sup>(2)</sup>                                                                      | Florida                                                     | Haw aii                                                 | Nevada                                    | Texas                             | Washington                                               |
|-------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|-----------------------------------|----------------------------------------------------------|
| Recharge    | Treatment                                                                                        | NR <sup>(3)</sup>                                                         |                                                                                                | Secondary<br>treatment and<br>basic<br>disinfection         |                                                         | NR                                        | NR                                | Oxidized,<br>coagulated,<br>filtered, and<br>disinfected |
|             | BOD <sub>5</sub>                                                                                 | NR                                                                        |                                                                                                | NS <sup>(4)</sup>                                           |                                                         | NR                                        | NR                                | 5 mg/l                                                   |
|             | TSS                                                                                              | NR                                                                        |                                                                                                | 10.0 mg/l                                                   |                                                         | NR                                        | NR                                | 5 mg/l                                                   |
|             | Turbidity                                                                                        | NR                                                                        | Case-bv-case                                                                                   | NS                                                          | Case-by-case<br>basis                                   | NR                                        | NR                                | 2 NTU (Avg)                                              |
|             | ,                                                                                                |                                                                           | basis                                                                                          |                                                             |                                                         |                                           |                                   | 5 NTU (Max)                                              |
|             |                                                                                                  | NR                                                                        |                                                                                                |                                                             |                                                         |                                           |                                   | Total                                                    |
|             | Coliform                                                                                         |                                                                           | NS                                                                                             |                                                             | NR                                                      | NR                                        | 2.2/100 ml<br>(Avg)               |                                                          |
|             |                                                                                                  |                                                                           |                                                                                                |                                                             |                                                         |                                           | 23/100 ml<br>(Max)                |                                                          |
|             | Total<br>Nitrogen                                                                                | NR                                                                        |                                                                                                | 12 mg/l                                                     |                                                         | NR                                        | NR                                | NS                                                       |
|             | <ol> <li>All state<br/>for recha</li> <li>Groundw</li> <li>NR - Not</li> <li>NS - Not</li> </ol> | requirement<br>rge of potab<br>ater recharç<br>regulated b<br>specified b | ts are for groun<br>ble aquifers are<br>ge in California<br>by the state<br>y state regulation | dwater recharg<br>contained in S<br>and Hawaii is de<br>ons | e via rapid-rate<br>ection 4.1.1.10<br>etermined on a c | application<br>and Append<br>case-by-case | systems. Addit<br>lix A.<br>basis | ional regulations                                        |

| Australia      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Official name  | National Guidelines for Water Recycling: Managing Health and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                | Environmental Risks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| In force since | November 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Involved       | Natural Resource Management Ministerial Council                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Administrative | Environment Protection and Heritage Council                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Bodies         | Australian Health Ministers' Conference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Scope          | This document — the National Water Quality Management Strategy<br>(NWQMS) National Guidelines for Water Recycling: Managing Health<br>and Environmental Risks — is an authoritative reference for the supply,<br>use and regulation of recycled water schemes. Through recycling,<br>various water sources that have traditionally been wasted, such as<br>stormwater, sewage effluent and greywater can become a valuable<br>resource. This document provides guidance on how such recycling can<br>be safely and sustainably achieved. It focuses on uses such as<br>agriculture, fire control, municipal, residential and commercial property,<br>and industry.<br>Publication of these guidelines is timely, because pressure on freshwater<br>supplies is increasing in many cities and regional areas of Australia, due<br>to widespread drought and movement of population to large centres near<br>capital cities. In recent years, several reports have suggested that<br>we need to use water more efficiently; for example, by reusing water<br>that has traditionally been seen as wastewater (SECITA 2002, Rathjen<br>et al 2003, AATSE 2004). In response to this situation, the Environment<br>Protection and Heritage Council and the Natural Resource Management<br>Ministerial Council developed these national guidelines on water<br>recycling, under the auspices of the NWQMS.<br>These guidelines overcome some of the deficiencies of related<br>publications. For example, they are more comprehensive than the<br><i>NWQMS Guidelines for Sewerage Systems, Use of Reclaimed<br/>Water</i> (NHMRC and ARMCANZ 2000) and provide a consistent<br>approach, whereas the guidelines developed by individual state and<br>territory governments vary in their approach. An important feature of<br>these guidelines is that they use a risk management framework, rather<br>than simply relying on post-treatment testing as the basis for managing<br>recycled water schemes.<br>When recycling water, it is essential to protect the health of both the<br>public and the environment, and a risk management approach is the best<br>way to achieve this. This type of approach been used in the food<br>ind |  |  |  |  |  |

| reacting when problems arise. The first step is to look at hazards in the recycled water that could potentially affect human or environmental health (ie 'What might happen and how it might occur?'). The next step is to estimate the risk from each hazard by assessing the likelihood that the event will happen and the consequences if it did (ie 'How likely is it that it will happen, and how serious will it be if it does?'). After characterising the risks, preventive measures to control hazards are then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| identified (le 'What can we do about it? ). The approach also includes<br>monitoring to ensure that the preventive measures operate effectively,<br>and verification to ensure that the management system consistently<br>provides recycled water of a quality that is fit for its intended use.<br>The risk management framework comprises 12 elements that fall into<br>four main categories:<br>• commitment to responsible use and management of recycled water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>system analysis and management</li> <li>supporting requirements (eg employee training, community involvement, research and development, validation, and documentation and reporting systems)</li> <li>review (eg evaluation and audit processes).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| The 12 elements are related, and all need to be implemented for the risk<br>management approach to be successful. An important feature of the<br>approach is that multiple barriers are used to control hazards, meaning<br>that if one measure fails, other measures continue to provide control.<br>For example, in a scheme to irrigate commercial crops with recycled<br>water from a major metropolitan sewage treatment plant, preventive<br>measures designed to protect human health might include restrictions on<br>the type of waste entering the plant, a range of treatment processes,<br>crossconnection control at all irrigation sites and an education program<br>on irrigation practices for those using the water or working on the<br>scheme. Also essential to the approach are critical control points; that is,<br>activities, procedures or processes where control can be applied, and<br>that are essential for either preventing or reducing to acceptable levels<br>those hazards that represent high risks.                                                                                                                                                                 |
| These guidelines should always be implemented in collaboration with relevant authorities such as those for protection of health and the environment. The guidelines consider management of risks to human health and environmental health, and focus on two specific situations — water recycled from a centralised sewage treatment plant and from greywater. The approach is to identify major health risks and the preventive measures needed to reduce those risks to an acceptably low level. Sources of recycled water such as sewage and greywater can contain a wide range of agents that pose risks to human health, including pathogenic (disease-causing) microorganisms and chemicals. Microbial hazards include bacteria, viruses, protozoa and, to a lesser extent, helminths. Chemical hazards include inorganic and organic chemicals, pesticides, potential endocrine disruptors, pharmaceuticals and disinfection byproducts. For human health, the main focus is on microbial hazards, although chemicals must also be considered, with some emerging areas of concern with long-term exposure to low levels of chemicals. For the environment, chemical hazards pose a greater risk. |

| than microbial hazards, although there are emerging areas of concern        |
|-----------------------------------------------------------------------------|
| with respect to microbial hazards, such as transfer of antibiotic-resistant |
| bacteria through waste going into the environment.                          |
| In managing risks to human health it is necessary to determine              |
| acceptable or tolerable risk, set health-based targets and assess risks.    |
| These guidelines use disability adjusted life years (DALYs) to convert      |
| the likelihood of infection or illness into burdens of disease and set a    |
| tolerable risk as 10–6 DALYs per person per vear. The tolerable risk is     |
| then used to set health-based targets that if met will ensure that the risk |
| remains below 10–6 DALYs per person per year                                |
| In identifying hazards, it is impractical to set human health-based targets |
| for all microorganisms that might be present in a source of recycled        |
| water: therefore, the guidelines specify the use of reference nathogens     |
| instead — <i>Campulobacter</i> for bacteria rotavirus and adenovirus for    |
| viruses and <i>Cryptosporidium paryum</i> for protozoa and helminths        |
| Dose_response information obtained from investigations of outbreaks or      |
| experimental human-feeding studies can be used to determine how             |
| exposure to a particular dose of a hazard relates to incidence or           |
| likelihood of illness                                                       |
| In considering exposure both intended and unintended uses need to be        |
| considered Unintended uses can be deliberate (eg filling a swimming         |
| pool with recycled water) or accidental (eg mistakenly cross-connecting     |
| water supplies). Similarly, in characterising risk, both maximum risk       |
| (ie risk in the absence of preventive measures) and residual risk (ie risk  |
| that remains after consideration of existing preventive measures) need to   |
| be taken into account. In managing risks to the environment from            |
| recycled water the aims are to safeguard the welfare of future              |
| generations, provide for equity within and between generations, protect     |
| biological diversity and maintain essential ecological processes and life-  |
| support systems. In place of DALYS and health-based targets.                |
| environmental guideline values are used: these are guideline values         |
| related to impacts on specific endpoints or receptors within the            |
| environment. Examples of endpoints include specific grasses, native         |
| tree species or soil types in the area where the recycled water is to be    |
| used. The process used to assess environmental risks is to first identify   |
| water sources, uses, users and routes of exposure. Following this, the      |
| recycled water system and water quality data are assessed: and finally.     |
| hazards are identified and the overall risk assessed.                       |
|                                                                             |
| As with health risks, assessing risks to the environment involves           |
| consideration of both maximum and residual risk. However, in the case       |
| of the environment, there is also an initial screening-level risk           |
| assessment, which might involve, for example, comparing hazard              |
| concentrations in the recycled water with known guideline values for        |
| hazards in the recycled water.                                              |
| In developing these guidelines, nine environmental hazards were             |
| identified that should be priorities for assessing the environmental risk   |
| associated with specific uses of recycled water (eg including               |
| agricultural, municipal, residential and fire control). The nine hazards    |
| are boron, cadmium, chlorine disinfection residuals. hvdraulic loading      |
| (water), nitrogen, phosphorus, salinity, chloride and sodium. A             |

| screening-level risk assessment identified a further nine hazards<br>associated with use of recycled water for environmental allocation for<br>water bodies — ammonia, aluminium, arsenic, copper, lead, mercury,<br>nickel, surfactants (ie linear alkylbenzene sulfonates and alcohol<br>ethoxylated surfactants) and zinc. Preventive measures to protect human<br>and environmental health include preventing hazards from entering<br>recycled water, removing them using treatment processes, and reducing<br>exposure, either by using preventive measures at the site of use or by<br>restricting uses of the recycled water. For example, treatment processes<br>used before recycling can reduce the concentration of both microbial<br>and chemical contaminants. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitoring is essential to determine baseline data (ie 'Where are we<br>now?'), to validate systems (ie 'Will it work?'), for operational purposes<br>(ie 'Is it working now?') and to verify that the processes used in<br>recycling are effective (ie 'Did it work?'). All types of monitoring<br>should be used in relation to both human and environmental health                                                                                                                                                                                                                                                                                                                                                                                                        |
| risks. For human health risks, validation monitoring is essential because<br>of the magnitude of potential health risks from use of recycled water.<br>This means that log reductions assured by designers and manufacturers<br>of treatment systems, or by user group representatives, cannot be<br>assumed to be valid — some objective empirical evidence of the log<br>reductions is required. The precise nature of the evidence depends on<br>the nature of the barriers. For environmental health risks, two major<br>factors influence monitoring requirements — the size of the recycled                                                                                                                                                                            |
| water scheme and the level of risk being managed. Generally, the larger<br>the recycled water system, the more endpoints are potentially affected,<br>and the greater the extent of monitoring needed. However, monitoring<br>will also be influenced by the level of risk, which depends on the<br>specific recycled water, and the preventive measures used to minimise<br>the risks associated with that system                                                                                                                                                                                                                                                                                                                                                           |
| Consultation and communication (covered in Chapter 6) form part of<br>the risk management framework. These aspects are particularly<br>important in water recycling, where a number of proposed schemes in<br>Australia and overseas have failed or been drastically altered because of<br>a lack of stakeholder support. Many different factors affect acceptance<br>of water recycling, ranging from disgust and cost to sociodemographic<br>factors. However, there are also many factors that may make the<br>community more likely to accept a water recycling scheme, such as                                                                                                                                                                                          |
| minimal human contact, clear protection of public health and the<br>environment, and confidence in local management of public utilities and<br>technologies. Research has also identified features needed for<br>a successful communication strategy, a range of possible methods for<br>engaging stakeholders at the planning and operation stages of a water<br>recycling scheme, and ideas for managing communication in a crisis.<br>These guidelines represent a first stage in developing information for<br>water recycling in Australia. They do not deal specifically with                                                                                                                                                                                          |
| recycling of water from industrial and commercial sources because such<br>waters can have very specific characteristics relating to quality,<br>variability and quantity. However, the generic approach described here<br>can be applied to these sources. Other aspects not covered by this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| document are the use of recycling to reduce the amount of wastewater<br>and stormwater discharged into environments such as oceans and rivers,<br>and the subject of water allocations (including environmental flows) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| und the subject of water unocations (merading environmental no (15).                                                                                                                                                   |

Treatment processes and on-site controls for designated uses of recycled water from treated sewage:

| Log<br>reduction<br>targets<br>(V, P, B) <sup>a</sup><br>Use — Dual<br>6.5<br>5.0<br>5.0 | Indicative treatment process<br>reticulation, toilet flushing, washi<br>Advanced treatment required,<br>such as:<br>• secondary, coagulation,<br>filtration and disinfection<br>• secondary, membrane<br>filtration, UV light | Log<br>reductions<br>achievable<br>by<br>treatment<br>(V, P, B)<br><b>ng machines, g</b><br>6.5<br>5.0<br>5.0 | On-site preventive measures<br>arden use<br>Strengthened cross-connection<br>controls required including<br>ongoing education of<br>householders and plumbers                                                                                                                                                                                          | Exposure<br>reduction <sup>b</sup> | <ul> <li>Water quality objectives<sup>c</sup></li> <li>To be determined on case-by-case basis depending on technologies</li> <li>Could include turbidity criteria for filtration, disinfectant Ct or dose (UV)</li> <li>E. coli &lt;1 per 100 mL</li> </ul> |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U D I                                                                                    |                                                                                                                                                                                                                               |                                                                                                               | <b>.</b>                                                                                                                                                                                                                                                                                                                                               |                                    |                                                                                                                                                                                                                                                             |
| Use — Dual                                                                               | reticulation — outdoor use only o                                                                                                                                                                                             | r indoor use of                                                                                               |                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                                                                                                                                                                                                                             |
| 6.0<br>4.5<br>5.0                                                                        | Advanced treatment required;<br>for example:<br>• secondary, coagulation,<br>filtration and disinfection<br>• secondary, membrane<br>filtration, UV light                                                                     | 6.0<br>4.5<br>5.0                                                                                             | Strengthened cross-connection<br>controls required, including<br>ongoing education of<br>householders and plumbers                                                                                                                                                                                                                                     |                                    | <ul> <li>To be determined on case-by-<br/>case basis depending on<br/>technologies</li> <li>Could include turbidity<br/>criteria for filtration,<br/>disinfectant Ct or dose (UV)</li> <li>E. coli &lt;1 per 100 mL</li> </ul>                              |
| Municipal us                                                                             | e — open spaces, sports grounds,                                                                                                                                                                                              | golf courses, d                                                                                               | lust suppression, etc or unrestrict                                                                                                                                                                                                                                                                                                                    | ed access and a                    | pplication                                                                                                                                                                                                                                                  |
| 5.0                                                                                      | Advanced treatment required;                                                                                                                                                                                                  | 5.0                                                                                                           | No specific measures                                                                                                                                                                                                                                                                                                                                   |                                    | • To be determined on case-by-                                                                                                                                                                                                                              |
| 3.5<br>4.0                                                                               | for example:<br>• secondary, coagulation,<br>filtration and disinfection<br>• secondary, membrane<br>filtration, UV light                                                                                                     | 3.5<br>4.0                                                                                                    | r                                                                                                                                                                                                                                                                                                                                                      |                                    | case basis depending on<br>technologies<br>• Could include turbidity<br>criteria for filtration,<br>disinfectant Ct or dose (UV)<br>• E. coli <1 per 100 mL                                                                                                 |
| Municipal us                                                                             | e, with restricted access and appl                                                                                                                                                                                            | ication                                                                                                       |                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                                                                                                                                                                                                                             |
|                                                                                          | Secondary treatment with disinfection                                                                                                                                                                                         | 2.0–3.0<br>1.0<br>>6.0                                                                                        | Restrict public access during<br>irrigation and one of the<br>following:<br>• no access after irrigation, until<br>dry (1–4 hours)<br>• minimum 25–30 m buffer to<br>nearest point of public access<br>• spray drift control; for<br>example, through low-throw<br>sprinklers (180° inward throw),<br>vegetation screening, or<br>anemometer switching | 2.0<br>1.0<br>1.0<br>1.0           | <ul> <li>BOD &lt;20 mg/Ld</li> <li>SS &lt;30 mg/ Ld</li> <li>Disinfectant residual (eg<br/>minimum chlorine residual) or<br/>UV dosee</li> <li>E. coli &lt;100 cfu/100 mL</li> </ul>                                                                        |
| Municipal us                                                                             | se, with enhanced restrictions on a                                                                                                                                                                                           | ccess and appl                                                                                                | lication                                                                                                                                                                                                                                                                                                                                               |                                    |                                                                                                                                                                                                                                                             |
|                                                                                          | <ul> <li>Secondary treatment with &gt;25<br/>days lagoon detention or<br/>primary treatment with &gt;50<br/>days lagoon detention</li> <li>Secondary treatment</li> </ul>                                                     | 1.0-3.0<br>1.0-3.0<br>3.0-4.0<br>0.5-2.0<br>0.5-1.0<br>1.0-3.0                                                | Restrict public access during<br>irrigation and combinations of:<br>• no access after irrigation, until<br>dry (1–4 hours)<br>• minimum 25–30 m buffer to<br>nearest point of public access<br>• spray drift control, eg through<br>low throw sprinklers (180°<br>inward throw), vegetation<br>screening, or anemometer<br>switching                   | 2.0<br>1.0<br>1.0                  | • BOD <20 mg/Ld<br>• SS <30 mg/ Ld<br>• E. coli <1000 cfu/100 mL<br>(disinfection may be required<br>to achieve this concentration)                                                                                                                         |
| Landscape ir                                                                             | rigation — trees, shrubs, public g                                                                                                                                                                                            | ardens, etc                                                                                                   |                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                                                                                                                                                                                                                             |
| 5.0<br>3.5<br>4.0                                                                        | Secondary treatment or primary treatment with lagoon detention                                                                                                                                                                | 0.5–2.0<br>0.5–2.0<br>1.0–3.0                                                                                 | Combinations of:<br>• microspray<br>• drip irrigation<br>• no public access                                                                                                                                                                                                                                                                            | 2.0<br>4.0<br>3.0                  | • BOD <20 mg/Ld<br>• SS <30 mg/ Ld<br>• E. coli <1000 cfu/100 mL (if<br>not disinfected)                                                                                                                                                                    |

| Commercial food crops consumed raw or unprocessed |                                                                                                                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |                                                                                                                                                                                                                                 |  |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 6.0<br>5.0<br>5.0                                 | Advanced treatment to achieve<br>total pathogen removal required<br>(eg secondary, filtration and<br>disinfection) | 6.0<br>5.0<br>5.0             | <ul> <li>None required, although<br/>pathogen reduction will occur<br/>between harvesting and sale</li> <li>The recycled water can be<br/>used for all crop applications,<br/>including spray irrigation of<br/>salad crops</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5<br>V, B                                     | <ul> <li>To be determined on case-by-<br/>case basis, depending on<br/>technologies</li> <li>Could include turbidity<br/>criteria for filtration,<br/>disinfectant Ct or dose (UV)</li> <li>E. coli &lt;1 per 100 mL</li> </ul> |  |  |
| Commercial                                        | food crops                                                                                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                               |                                                                                                                                                                                                                                 |  |  |
| 6.0<br>5.0<br>5.0                                 | Secondary treatment with >25<br>days lagoon detention and<br>disinfection                                          | 3.0–4.0<br>2.0–4.0<br>>6.0    | Consumers<br>• Crops with limited or no<br>ground contact and eaten raw<br>(eg tomatoes, capsicums) —<br>drip irrigation and no harvest of<br>wet or dropped produce<br>• Crops with ground contact<br>with skins removed before<br>consumption (eg watermelons)<br>— if spray irrigation, minimum<br>2 days between final irrigation<br>and harvest<br>• Pathogen reduction between<br>harvesting and sale<br><i>Public in vicinity of irrigation</i><br><i>area</i> <sup>5</sup><br>• No access and drip or<br>subsurface irrigation<br>and if spray irrigation,<br>minimum 25–30 m buffer<br>distance between irrigation area<br>and nearest public access point | 3.0<br>3.0–4.0<br>0.5/day<br>V, B<br>6.0<br>4.0 | <ul> <li>BOD &lt;20 mg/Ld</li> <li>SS &lt;30 mg/ Ld</li> <li>Disinfectant residual (eg minimum chlorine residual) or UV dosee</li> <li>E. coli &lt;100 cfu/100 mL</li> </ul>                                                    |  |  |
| Commercial                                        | food crops                                                                                                         | 1                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                               | L                                                                                                                                                                                                                               |  |  |
| 6.0<br>5.0<br>5.0                                 | Secondary treatment with disinfection                                                                              | 2.0–3.0<br>1.0<br>>6.0        | Consumers<br>• Above-ground crops with<br>subsurface irrigation<br>• Crops with no ground contact<br>and skins removed before<br>consumption (eg citrus,<br>nuts)<br>– no harvest of wet or dropped<br>produce<br>– if spray irrigation, minimum<br>2 days between final irrigation<br>and harvest<br>• Pathogen reduction between<br>harvesting and sale<br><i>Public in vicinity of irrigation</i><br><i>area</i> <sup>f</sup><br>• No access and drip or<br>subsurface irrigation<br>and if spray irrigation,<br>minimum 25–30 m buffer<br>distance between irrigation area<br>and nearest public access point                                                   | 4.0<br>4.0<br>0.5/day<br>V, B<br>6.0<br>4.0     | <ul> <li>BOD &lt;20 mg/Ld</li> <li>SS &lt;30 mg/ Ld</li> <li>Disinfectant residual (eg minimum chlorine residual) or UV dosee</li> <li>E. coli &lt;100 cfu/100 mL</li> </ul>                                                    |  |  |
| Commercial                                        | food crops                                                                                                         |                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 1                                                                                                                                                                                                                               |  |  |
| 6.0<br>5.0<br>5.0                                 | Secondary treatment or primary<br>treatment with lagoon detention                                                  | 0.5-1.0<br>0.5-2.0<br>1.0-3.0 | Consumers<br>• Crops with no ground contact<br>and heavily processed (eg<br>grapes for wine production,<br>cereals)<br>• Crops cooked/processed<br>before consumption (eg<br>potatoes, beetroot)<br>• no harvest of wet or dropped<br>produce consumption (eg<br>citrus, nuts)<br>– no spray irrigation<br>• Crops with no ground contact<br>and skin removed before<br>• Raised crops (eg apples,<br>apricots, grapes)<br>– drin irrigation and no barvest                                                                                                                                                                                                         | 5.0-6.0<br>5.0-6.0<br>6.0<br>5.0                | • BOD <20 mg/Ld<br>• SS <30 mg/ Ld<br>• E. coli <1000 cfu/100 mL                                                                                                                                                                |  |  |

|                   |                                                                   |                               | of wet, dropped produce<br>• Pathogen reduction between<br>harvesting and sale<br><i>Public in vicinity of irrigation</i><br><i>area<sup>e</sup></i><br>• No access and drip irrigation<br>• No access during irrigation<br>and, if spray irrigation,<br>minimum 25–30 m buffer<br>distance between irrigation area<br>and nearest public access point,<br>and spray drift control (eg<br>through part circle sprinklers<br>with 180° inward throw,<br>vegetation screening, or<br>anemometer switching)<br>or<br>• Extended buffer distances to<br>>50 m | 0.5/day<br>V, B<br>6.0<br>5.0 |                                         |
|-------------------|-------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|
| Nonfood cro       | ps — trees, turf, woodlots, flowers                               | 5                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                                         |
| 5.0<br>3.5<br>4.0 | Secondary treatment or primary<br>treatment with lagoon detention | 0.5-1.0<br>0.5-2.0<br>1.0-3.0 | Public in vicinity of irrigation<br>area<br>• No access and drip irrigation<br>• No access during irrigation<br>and, if spray irrigation,<br>minimum 25–30 m buffer<br>distance between irrigation area<br>and nearest point of public<br>access, and spray drift control<br>(eg through part cycle<br>sprinklers with 180° inward<br>throw, vegetation screening, or<br>anemometer switching)<br>or<br>• Extended buffer distances to<br>>50 m                                                                                                           | 6.0 5.0                       | • E. coli <10 000 cfu/100 mL            |
| B = enteric ba    | acteria; BOD = biochemical oxygen                                 | demand; cfu =                 | colony forming unit; Ct = disinfect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ant concentration             | on $\times$ time; P = enteric protozoa; |
| SS =suspende      | ed solid: $V =$ enteric virus:                                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                                         |

SS = suspended solid; vUV = ultraviolet

a Log reduction targets are minimum reductions required from raw sewage based on 95th percentiles from Table 3.7.

b Exposure reductions are those achievable by on-site measures as listed in Table 3.3.

c Water quality objectives represent medians for numbers of E. coli and means for other parameters.

d BOD and SS are an indication of secondary treatment effectiveness.

e Aim is to demonstrate reliability of disinfection and ability to consistently achieve microbial quality

f Log reductions for public in the vicinity of commercial food crop irrigation areas should comply with total log reductions required for municipal use.

|               |                                             | C                                                    | hina               |                 |                        |                    |                              |  |
|---------------|---------------------------------------------|------------------------------------------------------|--------------------|-----------------|------------------------|--------------------|------------------------------|--|
| Official name | GB/T18920-2002, GB/T18921-2002, GB3838-2002 |                                                      |                    |                 |                        |                    |                              |  |
| Policy Issues |                                             | Scenic impoundments, lakes                           |                    | Urban reuse     |                        |                    | Surface<br>water<br>standard |  |
|               | Parameter $[mg \cdot L^1]$                  | Restricted reuse                                     | Unrestricted reuse | Tollet flushing | Irrigation<br>of green | Washing<br>purpose | III (f. lakes)               |  |
|               | BODS                                        | < 6                                                  | < 6                | < 10            | < 20                   | < 10               | < 4                          |  |
|               | TDS                                         |                                                      |                    | < 1500          | < 1000                 | < 1000             | n. r.                        |  |
|               | Turbidity [NTU]                             | D. I.                                                | < 5                | < 5             | < 20                   | < 5                | n. r.                        |  |
|               | TP-P                                        | 0.5                                                  | 0.5                | <b>n. r.</b>    | <b>n.</b> r.           | n. r.              | 0.05                         |  |
|               | TN                                          | 15                                                   | 15                 | <b>n. r.</b>    | <b>n.</b> r.           | n. r.              | 1.0                          |  |
|               | NH4-N                                       | < 5                                                  | < 5                | < 10            | < 20                   | < 10               | <1                           |  |
|               | Fecal coliform<br>[< counts / 100 ml]       | 10,000                                               | 500                | 3               | 3                      | 3                  | 10000                        |  |
|               | Residual chlorine                           | > 1 mg/l after 30 min,<br>> 0,2 mg/l at point of use |                    |                 |                        |                    | n.r.                         |  |
|               | Color [m <sup>-1</sup> ]                    | 30                                                   | 30                 | 30              | 30                     | 30                 | n. r.                        |  |